
BioMed CentralJournal of Nanobiotechnology

ss
Open AcceResearch
Polymeric nanoparticle-encapsulated curcumin ("nanocurcumin"): 
a novel strategy for human cancer therapy
Savita Bisht1, Georg Feldmann1, Sheetal Soni3, Rajani Ravi2, Collins Karikar1, 
Amarnath Maitra3 and Anirban Maitra*1,2

Address: 1The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine, 
Baltimore, Maryland, USA, 2Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA and 3Department 
of Chemistry, University of Delhi, Delhi, India

Email: Savita Bisht - sbisht1@jhmi.edu; Georg Feldmann - gfeldma4@jhmi.edu; Sheetal Soni - sheetalsoni@gmail.com; 
Rajani Ravi - ravira@jhmi.edu; Collins Karikar - ckarika1@jhmi.edu; Amarnath Maitra - maitraan@yahoo.co.in; 
Anirban Maitra* - amaitra1@jhmi.edu

* Corresponding author    

Abstract
Background: Curcumin, a yellow polyphenol extracted from the rhizome of turmeric (Curcuma
longa), has potent anti-cancer properties as demonstrated in a plethora of human cancer cell line
and animal carcinogenesis models. Nevertheless, widespread clinical application of this relatively
efficacious agent in cancer and other diseases has been limited due to poor aqueous solubility, and
consequently, minimal systemic bioavailability. Nanoparticle-based drug delivery approaches have
the potential for rendering hydrophobic agents like curcumin dispersible in aqueous media, thus
circumventing the pitfalls of poor solubility.

Results: We have synthesized polymeric nanoparticle encapsulated formulation of curcumin –
nanocurcumin – utilizing the micellar aggregates of cross-linked and random copolymers of N-
isopropylacrylamide (NIPAAM), with N-vinyl-2-pyrrolidone (VP) and
poly(ethyleneglycol)monoacrylate (PEG-A). Physico-chemical characterization of the polymeric
nanoparticles by dynamic laser light scattering and transmission electron microscopy confirms a
narrow size distribution in the 50 nm range. Nanocurcumin, unlike free curcumin, is readily
dispersed in aqueous media. Nanocurcumin demonstrates comparable in vitro therapeutic efficacy
to free curcumin against a panel of human pancreatic cancer cell lines, as assessed by cell viability
and clonogenicity assays in soft agar. Further, nanocurcumin's mechanisms of action on pancreatic
cancer cells mirror that of free curcumin, including induction of cellular apoptosis, blockade of
nuclear factor kappa B (NFκB) activation, and downregulation of steady state levels of multiple pro-
inflammatory cytokines (IL-6, IL-8, and TNFα).

Conclusion: Nanocurcumin provides an opportunity to expand the clinical repertoire of this
efficacious agent by enabling ready aqueous dispersion. Future studies utilizing nanocurcumin are
warranted in pre-clinical in vivo models of cancer and other diseases that might benefit from the
effects of curcumin.
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Background
Curcumin or diferuloylmethane is a yellow polyphenol
extracted from the rhizome of turmeric (Curcuma longa), a
plant grown in tropical Southeast Asia [1]. For centuries,
turmeric has been used as a spice and coloring agent in
Indian food, as well as a therapeutic agent in traditional
Indian medicine. Enthusiasm for curcumin as an anti-can-
cer agent evolved based on the wealth of epidemiological
evidence suggesting a correlation between dietary tur-
meric and low incidence of gastrointestinal mucosal can-
cers [2,3]. A plethora of experimental data has
unequivocally established that free curcumin induces cell
cycle arrest and/or apoptosis in human cancer cell lines
derived from a variety of solid tumors including colorec-
tal, lung, breast, pancreatic and prostate carcinoma,
amongst others [4-12]. In addition to a potential applica-
tion in cancer therapy, studies in numerous experimental
(chemical) carcinogenesis models [13-17], and more
recently in a clinical trial performed in patients with
familial adenomatous polyposis [18], have confirmed
that curcumin can also ameliorate the progression to can-
cer in a variety of organ sites, reiterating this agent's poten-
tial as a tool for chemoprevention.

Despite the considerable promise that curcumin is an effi-
cacious and safe compound for cancer therapy and chem-
oprevention, it has by no means been embraced by the
cancer community as a "panacea for all ills". The single
most important reason for this reticence has been the
reduced bioavailability of orally administered curcumin,
such that therapeutic effects are essentially limited to the
tubular lower GI tract (i.e., colorectum) [19,20]. For
example, in a Phase I clinical trial, patients with hepatic
colorectal cancer metastases were administered 3600 mg
of oral curcumin daily, and levels of curcumin and its
metabolites measured by HPLC in portal and peripheral
blood [21]. Curcumin was poorly available following oral
administration, with low nanomolar levels of the parent
compound and its glucuronide and sulphate conjugates
found in the peripheral or portal circulation. In another
Phase I study, patients were required to partake 8000 mg
of free curcumin orally per day, in order to achieve detect-
able systemic levels; beyond 8 grams, the bulky volume of
the drug was unacceptable to patients [22]. A third human
Phase I trial involving curcumin dose escalation found no
trace of this compound at doses of 500–8,000 mg/day,
and only trace amounts in a minority of patients at 10–12
grams of curcumin intake per day [23]. The development
of a delivery system that can enable parenteral administra-
tion of curcumin in an aqueous phase medium will signif-
icantly harness the potential of this promising anti-cancer
agent in the clinical arena.

We report the synthesis, physico-chemical characteriza-
tion, and cancer-related application of a nanoparticle-

encapsulated formulation of curcumin, "nanocurcumin".
Cross-linked polymeric nanoparticles with a hydrophobic
core and a hydrophilic shell were used for encapsulation
of curcumin, generating drug-encapsulated nanoparticles
consistently in size less than 100 nm.

Results and discussion
Synthesis and detailed physico-chemical characterization 
of NIPAAM/VP/PEG-A copolymeric nanoparticles (FT-IR, 
1H-NMR, DLS, TEM and Release Kinetics)
Random co-polymerization of NIPAAM with VP and PEG-
A was performed by free radical polymerization process of
the micellar aggregates of the amphipilic monomers (Fig-
ure 1). The polymeric nanoparticles formed in this way
also have an amphiphilic character with a hydrophobic
core inside the micelles, and a hydrophilic outer shell
composed of hydrated amides, pyrrolidone and PEG moi-
eties that project from the monomeric units [24,25].

Mid infra-red (IR) spectra of NIPAAM, VP, PEG-A, and
"void" (empty) polymeric nanoparticles were obtained to
determine whether appropriate polymerization has
occurred or whether monomers were present in the phys-
ical mixture. As seen in Figure 2, strong peaks in the range
of 800–1000 cm-1 corresponding to the stretching mode
of vinyl double bonds disappeared in the spectrum of pol-
ymer indicating that polymerization has taken place. The
water attached in the process of hydration of the polymer
and proton exchange with the solvent gives rise to a broad
and intense peak at 3300 cm-1. The – CH- stretching vibra-
tion of the polymer backbone is manifested through
peaks at 2936–2969 cm-1, while peaks at 1642 and 1540
cm-1 correspond to the amide carbonyl group and the
bending frequency of the amide N-H group respectively.
The absorptions bands in the region 1443–1457 cm-1 are
due to the bending vibration of CH3 group and the bend-
ing vibration of CH2 group can be identified in a slightly
higher region.

In Figure 3, we illustrate the typical 1H-NMR spectrum
and the chemical shift assignments of the monomers as
well as the copolymer formed. Polymerization is indi-
cated by the absence of the proton resonance of the vinyl
end groups of the monomers in the spectrum of the
formed co-polymeric micelle. Rather, resonance can be
observed at the upfield region (δ = 1.4–1.9 ppm), attrib-
utable to the saturated protons of the polymeric network.
The broad resonance peak at δ = 0.8–1.0 ppm are from the
methyl protons of the isopropyl group. The signal peaks
for the methyne proton (>CH-) of N-isopropylacrylamide
group and methylene protons (-CH2-) of polyethylene
oxide can be observed at 3.81 and 3.71 ppm respectively.

The size and size distribution of the polymeric nanoparti-
cles were measured by means of dynamic light scattering
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(DLS). In Figure 4A, the typical size distribution of the
nanoparticles is illustrated, and the average size corre-
sponds to less than 50 nm diameter at 25°C with a narrow
size distribution. Transmission electron microscopy
(TEM) of the polymeric nanoparticles is illustrated in Fig-
ure 4B, and demonstrates that the particles have spherical
morphology and low polydispersity with an approximate
size of around 45 nm diameter, which is comparable to
the size obtained from DLS measurements.

The entrapment efficiency of curcumin within the nano-
particles was found to be >90%, based on calculations
described in the Methods. The in vitro release profile of the
loaded curcumin from the nanoparticles at physiological
pH is illustrated in Figure 5. Curcumin release occurs in a
sustained manner, such that only 40% of the total drug is
releaed from the nanoparticles at 24 hours.

In vitro and in vivo toxicity studies of void polymeric 
nanoparticles
An ideal drug delivery platform must be biodegradable,
biocompatible and not be associated with incidental
adverse effects. The toxicity profile of the void polymeric

nanoparticles was studied in vitro and in vivo. In a panel of
eight human pancreatic cancer cell lines (Figure 6A), we
found no evidence of toxicity in cell viability assays, across
a 20-fold dose range of the void nanoparticles. We then
studied the effects of these particles in athymic ("nude")
mice, a commonly used vehicle for preclinical tumor stud-
ies. The mice were randomized to two arms of 4 mice each
– control and void nanoparticles (720 mg/kg i.p. twice
weekly for three weeks). As seen in Figure 6B, despite the
relatively large dosage, the mice receiving void nanoparti-
cles demonstrated no evidence of weight loss, and no
gross organ changes were seen at necropsy. No behavioral
changes were observed in the mice during the course of
administration, or in the ensuing follow up period.

Nanocurcumin inhibits the growth of pancreatic cancer 
cell lines and abrogates colony formation
Free curcumin is poorly soluble in aqueous media, with
macroscopic undissolved flakes of the compound visible
in the solution (Figure 7A); in contrast, nanocurcumin is
a clear, dispersed formulation, with its hue derived from
the natural color of curcumin (Figure 7B). We performed
a series of in vitro functional assays to better characterize

Synthesis strategy for NIPAAM/VP/PEG-A co-polymeric nanoparticlesFigure 1
Synthesis strategy for NIPAAM/VP/PEG-A co-polymeric nanoparticles. Please refer to text for additional details. 
NIPAAM = N-isopropylacrylamide; VP = N-vinyl-2-pyrrolidone (VP); PEG-A = poly(ethyleneglycol)monoacrylate; MBA = N,N'-
Methylene bis acrylamide (MBA), APS = ammonium persulphate (APS); FAS = Ferrous ammonium sulphate; TEMED = Tetram-
ethylethylenediamine.
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the anti-cancer properties of nanocurcumin, using human
pancreatic cancer cells as a model system, and directly
comparing its efficacy to free curcumin. The choice of the
cancer type was based on multiple previous reports con-
firming the activity of free curcumin against pancreatic
cancer cell lines [7,8,26]. As seen in Figures 8A and 8B, the
polymeric nanoparticles encapsulating curcumin are
robustly taken up by pancreatic cancer cells, indicated by
the fluorescence emitted from the accumulated intra-cyto-
plasmic drug. In cell viability (MTT) assays performed
against a series of pancreatic cancer lines, nanocurcumin
consistently demonstrated comparable efficacy to free cur-
cumin (Figure 9), although some cell lines were resistant
to the agent per se. Nanocurcumin was effective in its abil-
ity to block clonogenicity of the MiaPaca pancreatic can-
cer cell line in soft agar assays (Figure 10). In comparison
to untreated cells, or cells exposed to void polymeric nan-

oparticles, both free curcumin and nanocurcumin caused
inhibition of clonogenicity at 10 and 15 μM dosages; the
effect with nanocurcumin was somewhat more pro-
nounced at the lower dose.

Nanocurcumin inhibits NFκB function in pancreatic 
cancer cell lines and downregulates multiple pro-
inflammatory cytokines
We then analyzed the mechanisms of action of nanocur-
cumin on pancreatic cancer cell lines, and compared the
functional pathways impacted by nanocurcumin to what
has been previously reported for free curcumin [26-31]. A
principal cellular target of curcumin in cancer cells is acti-
vated nuclear factor kappa B (NFκB), with many of the
pleiotropic effects of curcumin being ascribed to inhibi-
tion of this seminal transcription factor. In electrophoretic
mobility shift ("gel shift") assays to assess for the DNA

Fourier transform infra-red (FTIR) spectrum of copolymeric nanoparticlesFigure 2
Fourier transform infra-red (FTIR) spectrum of copolymeric nanoparticles. The FTIR spectrum of (NIPAAM-VP-
PA) copolymer demonstrates complete polymerization and absence of monomers in the physical mixture. The spectra of the 
three commercially available monomers are not shown.
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binding ability of NFκB, we demonstrate that nanocurcu-
min robustly inhibits NFκB function in pancreatic cancer
cell lines BxPC3 and MiaPaca (Figures 11A and 11B). In
BxPC3 cells, inhibition of NFκB (assessed by a shift in
migration of radio-labeled p65-binding oligonucleotide)
can be seen as early as 1–2 hours post exposure to both
free and nanocurcumin. In MiaPaca cells, we see persist-
ent activation of NFκB in cells exposed to free curcumin
after overnight incubation, while a perceptible gel shift is
observed in the nanocurcumin treated cells. Lastly, we
examined whether nanocurcumin can inhibit pro-inflam-
matory cytokines in peripheral blood mononuclear cells
(PBMCs); many of these cytokines (IL-6, IL-8, and TNFα)
have also been implicated in the carcinogenesis process,
including the induction of angiogenesis [32]. Incubation
of stimulated PBMCs with both free and nanocurcumin
decreased steady-state mRNA levels of IL-6, IL-8 and

TNFα, compared to DMSO and void nanoparticle-treated
cells (Figure 12A–C), with evidence of dose dependent
reduction of IL-6 by both agents (Figures 13A–B).

Conclusion
In the course of the past decade, the field of drug delivery
has been revolutionized with the advent of nanotechnol-
ogy, wherein biocompatible nanoparticles have been
developed as inert systemic carriers for therapeutic com-
pounds to target cells and tissues [33-38]. A recent exam-
ple of the impact of nanomedicine in drug delivery is
underscored by the success of Abraxane™, an albumin
nanoparticle conjugate of paclitaxel, and the first FDA-
approved anti-cancer agent in this emerging class of drug
formulations [39]. In a quest for developing stable and
efficient systemic carriers for hydrophobic anti-cancer
compounds, our laboratory has developed cross-linked

Nuclear magnetic resonance (NMR) spectrum of copolymeric nanoparticlesFigure 3
Nuclear magnetic resonance (NMR) spectrum of copolymeric nanoparticles. The NMR spectra further confirms 
the formation of the copolymer as is evident by the corresponding signal peaks of the different protons present in the poly-
meric backbone. The spectra of the three commercially available monomers are not shown.
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polymeric nanoparticles comprised of N-isopropylacryla-
mide (NIPAAM), N-vinyl-2-pyrrolidinone (VP) and
poly(ethyleneglycol) acrylate (PEG-A). We demonstrate
the essential non-toxicity of the void polymeric formula-
tion in vitro and in vivo, underscoring the potential of these
nanoparticles as a carrier for hydrophobic drugs.

Peer reviewed publications numbering in the 100 s have
reiterated the potency of curcumin against a plethora of
human cancer lines in the laboratory (selected reviews
include [1,4-6,40,41]). Equally important, free curcumin
was shown not to be cytotoxic to normal cells, including
hepatocytes, mammary epithelial cells, kidney epithelial
cells, lymphocytes, and fibroblasts at the dosages required
for therapeutic efficacy against cancer cell lines [42-46];
these in vitro findings are underscored by the limited
human clinical trials performed with oral curcumin,

wherein doses up to 10 grams per day have had minimal
adverse effects, even to the highly exposed gastrointestinal
mucosa [18-22]. Nevertheless, few clinical trials have
been performed with this agent.

A liposomal curcumin formulation was recently described
that demonstrates comparable potency to free curcumin,
and which can be administered via the parenteral route
[47]. Even as further studies with this liposomal formula-
tion are awaited, it is emphasized that liposomes, which
are metastable aggregates of lipids, tend to be more heter-
ogeneous, and larger in size (typically 100–200 nm) than
most nanoparticles. We have synthesized a nanoparticu-
late formulation of curcumin – nanocurcumin – wherein
the polymeric nanoparticles formed are consistently less
than 100 nm in size (mostly in the 50 nm size range), as
stated in the National Nanotechnology Initiative's

Size characterization of the polymeric nanoparticles using dynamic laser light scattering (DLS) and transmission electron micro-graph (TEM) studiesFigure 4
Size characterization of the polymeric nanoparticles using dynamic laser light scattering (DLS) and transmis-
sion electron micrograph (TEM) studies. (A) DLS of the polymeric nanoparticles confirms a narrow size distribution in 
the 50 nm range. All the data analysis was performed in automatic mode. Measured size was presented as the average value of 
20 runs. B) TEM picture demonstrates particles with a spherical morphology, low polydispersity, and an average size of 45 nm, 
comparable to what is observed in the DLS studies.
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(NNI's) definition of "nanomaterials". We have demon-
strated that our nanocurcumin formulation has compara-
ble efficacy to free curcumin against pancreatic cancer cell
lines in vitro, by inhibiting cell viability and colony forma-
tion in soft agar. Further, our studies confirm that nano-
curcumin retains the mechanistic specificity of free
curcumin, inhibiting the activation of the seminal tran-
scription factor NFκB, and reducing steady state levels of
pro-inflammatory cytokines like interleukins and TNFα.

Nanocurcumin opens up avenues for systemic therapy of
human cancers, as well as other human maladies like
Alzheimer disease [48-51] and cystic fibrosis [52-54],
wherein the beneficial effects of curcumin have been pro-
pounded. Future studies using relevant experimental
models will enable addressing these scenarios in an in vivo
setting, and should facilitate the eventual clinical transla-
tion of this well known but under-utilized therapeutic
agent.

Methods
Preparation of polymeric nanoparticles
A co-polymer of N-isopropylacrylamide (NIPAAM) with
N-vinyl-2-pyrrolidone (VP) poly(ethyleneglycol)
monoacrylate (PEG-A) was synthesized through free radi-
cal polymerization as shown in the accompanying flow-
chart (Figure 1). NIPAAM, VP and PEG-A were obtained
from Sigma chemicals (St. Louis, MO). NIPAAM was
recrystallized using hexane, VP was freshly distilled before
use, and PEG-A was washed with n-hexane three times to
remove any inhibitors; Millipore water and other chemi-

cals were used as-is. Thereafter, the water-soluble mono-
mers – NIPAAM, VP and PEG-A were dissolved in water in
90: 5: 5 molar ratios. The polymerization was initiated
using ammonium persulphate (APS, Sigma) as an initia-
tor in a nitrogen (N2) atmosphere. Ferrous ammonium
sulphate (FAS, Sigma) was added to activate the polymer-
ization reaction, and also to ensure complete polymeriza-
tion of the monomers. In a typical experimental protocol,
90 mg NIPAAM, 5 μl freshly distilled VP, and 500 μl PEG-
A (1% w/v) were added in 10 ml of water. To cross-link
the polymer chains, 30 μl of N,N'-Methylene bis acryla-
mide (MBA, Sigma, 0.049 g/ml) was added to the aqueous
solution of monomers. The dissolved oxygen was
removed by passing nitrogen gas for 30 minutes. Thereaf-
ter, 20 μl of FAS (0.5% w/v), 30 μl of APS and 20 μl of
TEMED (Invitrogen, Carlsbad CA, USA) were added to
initiate the polymerization reaction. The polymerization
was performed at 30°C for 24 hours in a N2 atmosphere.
After the polymerization was complete, the total aqueous
solution of polymer was dialyzed overnight using a Spec-
trapore® membrane dialysis bag (12 kD cut off) to remove
any residual monomers. The dialyzed solution was then
lyophilized immediately to obtain a dry powder for sub-
sequent use, which was easily re-dispersible in aqueous
media. The yield of the polymeric nanoparticles was typi-
cally more than 90% with this protocol.

Loading of curcumin
Curcumin was a kind gift of Indsaff, Inc. (Batala, Punjab,
India). Curcumin loading in the polymeric nanoparticles
was done by using a post-polymerization method. In this
process of loading, the drug is dissolved after the co-poly-
mer formation has taken place. The physical entrapment
of curcumin in NIPAAM/VP/PEG-A polymeric nanoparti-
cles was carried out as follows: 100 mg of the lyophilized
powder was dispersed in 10 ml distilled water and was
stirred to re-constitute the micelles. Free curcumin was
dissolved in chloroform (CHCl3; 10 mg/ml) and the drug
solution in CHCl3 was added to the polymeric solution
slowly with constant vortexing and mild sonication. Cur-
cumin is directly loaded into the hydrophobic core of
nanoparticles by physical entrapment. The drug-loaded
nanoparticles are then lyophilized to dry powder for sub-
sequent use.

Entrapment efficiency (E %)
The entrapment efficiency (E %) of curcumin loaded in
NIPAAM-VP-PEG-A nanoparticles was determined as fol-
lows: the nanoparticles were separated from the un-
entrapped free drug using NANOSEP (100 kD cut off)
membrane filter and the amount of free drug in the filtrate
was measured spectrophotometrically using a WALLAC
plate reader at 450 nm. The E% was calculated by

E% = ([Drug]tot - [Drug]free)/[Drug]tot × 100

In vitro release kinetics of nanocurcuminFigure 5
In vitro release kinetics of nanocurcumin. The release 
kinetics of nanocurcumin demonstrates ~40% release of cur-
cumin from the co-polymer at 24 hours, when dispersed in 
phosphate buffer at physiological pH. The error bars repre-
sent mean and standard deviations of experiments per-
formed in triplicate.
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Toxicity profile of void polymeric nanoparticlesFigure 6
Toxicity profile of void polymeric nanoparticles. A) A series of eight pancreatic cancer cell lines were exposed to a 20-
fold range of void polymeric nanoparticles (93 – 1852 μg/mL), and viability assays (MTT) were performed at 72 hours. Com-
pared to vehicle treated cells, no cytotoxicity is observed in the cells exposed to polymeric nanoparticles. The error bars rep-
resent mean and standard deviations of experiments performed in triplicate. B) In vivo toxicity studies were performed by 
administration of polymeric nanoparticles (720 mg/kg intra-peritoneal twice weekly, three weeks) to a group of 4 athymic 
mice, which were weighed at weekly intervals in comparison to control mice (N = 4). No significant differences in body weight 
were seen; at necropsy, no gross toxicity was evident. The error bars represent mean and standard deviations of experiments 
performed in triplicate.
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Fourier Transform Infrared (FT-IR) studies of polymeric 
nanoparticles
Mid infra red (IR) spectrum of NIPAAM, VP and PEG-A
monomers, as well as the void polymeric nanoparticles
were taken using Bruker Tensor 27 (FT-IR) spectropho-
tometer (Bruker Optics Inc., Billerica, MA, USA).

1-H Nuclear Magnetic Resonance (NMR) studies
The NMR spectrum of monomers NIPAAM, VP and PA, as
well as void polymeric nanoparticles were taken by dis-
solving the samples in D2O as solvent using Bruker
Avance 400 MHz spectrometer (Bruker BioSpin Corpora-
tion, Billerica, MA, USA).

Dynamic light scattering (DLS) measurements
DLS measurements for determining the average size and
size distribution of the polymeric micelles were per-

formed using a Nanosizer 90 ZS (Malvern Instruments,
Southborough, MA). The intensity of scattered light was
detected at 90° to an incident beam. The freeze-dried
powder was dispersed in aqueous buffer and measure-
ments were done, after the aqueous micellar solution was
filtered with a microfilter having an average pore size of
0.2 mm (Millipore). All the data analysis was performed
in automatic mode. Measured size was presented as the
average value of 20 runs, with triplicate measurements
within each run.

Transmission electron microscopy (TEM)
TEM pictures of polymeric nanoparticles were taken in a
Hitachi H7600 TEM instrument operating at magnifica-
tion of 80 kV with 1 K × 1 K digital images captured using
an AMT CCD camera. Briefly, a drop of aqueous solution
of lyophilized powder (5 mg/ml) was placed on a mem-

Nano-encapsulation renders curcumin completely dispersible in aqueous mediaFigure 7
Nano-encapsulation renders curcumin completely dispersible in aqueous media. (a) Free curcumin is poorly solu-
ble in aqueous media, and macroscopic flakes can be seen floating in the bottle. In contrast, the equivalent quantity of curcumin 
encapsulated in polymeric nanoparticles is fully dispersible in aqueous media (b).
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brane coated grid surface with a filter paper (Whatman
No. 1). A drop of 1% uranyl acetate as immediately added
to the surface of the carbon coated grid. After 1 min excess
fluid was removed and the grid surface was air dried at
room temperature before loaded in the microscope.

In vitro release kinetics of nanocurcumin
A known amount of lyophilized polymeric nanoparticles
(100 mg) encapsulating curcumin was dispersed in 10 ml
phosphate buffer, pH 7.4, and the solution was divided in
20 microfuge tubes (500 μl each). The tubes were kept in
a thermostable water bath set at room temperature. Free
curcumin is completely insoluble in water; therefore, at
predetermined intervals of time, the solution was centri-
fuged at 3000 rpm for 10 minutes to separate the released
(pelleted) curcumin from the loaded nanoparticles. The
released curcumin was redissolved in 1 ml of ethanol and
the absorbance was measured spectrophotometrically at
450 nm. The concentration of the released curcumin was
then calculated using standard curve of curcumin in etha-
nol. The percentage of curcumin released was determined
from the equation

where, [Curcumin]rel is the concentration of released cur-
cumin collected at time t and [Curcumin]tot is the total
amount of curcumin entrapped in the nanoparticles.

In vitro and vivo toxicity studies with void polymeric 
nanoparticles
In order to exclude the possibility of de novo toxicity from
the polymeric constituents, we utilized void nanoparticles
against a panel of eight human pancreatic cancer cell lines
(MiaPaca2, Su86.86, BxPC3, Capan1, Panc1, E3LZ10.7,
PL5 and PL8). These cells were exposed to void nanopar-
ticles for 96 hours across a 20-fold concentration range
(93 – 1852 μg/mL) and cell viability measured by MTS
assay, as described below. Further, limited in vivo toxicity
studies were performed in athymic (nude) mice by intra-
peritoneal injection of void polymeric nanoparticles at a
considerably high dosage of 720 mg/kg twice weekly, for
a period of three weeks. Mice receiving intra-peritoneal
nanocurcumin (N = 4) were weighed weekly during the
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Intracellular uptake of nanocurcumin by pancreatic cancer cell linesFigure 8
Intracellular uptake of nanocurcumin by pancreatic cancer cell lines. Marked increase in fluorescence was observed 
by fluorescent microscopy in BxPC3 cells incubated with nanocurcumin (a) as compared to untreated control cells (b), in line 
with cellular uptake of curcumin in (a).
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Nanocurcumin inhibits the growth of pancreatic cancer cell linesFigure 9
Nanocurcumin inhibits the growth of pancreatic cancer cell lines. Cell viability (MTT) assays were performed using 
equivalent dosages of free curcumin and nanocurcumin in a panel of human pancreatic cancer cell lines. The assay was termi-
nated at 72 hours, and colorimetric determination of cell viability performed. Four of six cell lines demonstrate response to 
nanocurcumin (defined as an IC50 in the 10–15 μM range) – BxPC3, ASPC-1, PL-11 and XPA-1, while two lines are curcumin-
resistant – PL-18 and PK-9. All assays were performed in triplicate, and the mean ± standard deviations are presented.
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course of therapy and average weight compared to that of
control littermate nude mice (N = 4). At the culmination
of the three week course, mice were euthanized and
necropsy performed to exclude any intraperitoneal depo-
sition of polymers, or gross organ toxicities.

Fluorescence microscopy for nanocurcumin uptake by 
pancreatic cancer cells
Curcumin is naturally fluorescent in the visible green
spectrum. In order to study uptake of curcumin encapsu-
lated in nanoparticles, BxPC3 cells were plated in 100 mm
dishes, and allowed to grow to sub-confluent levels.
Thereafter, the cells were incubated with nanocurcumin
for 2–4 hours, and visualized in the FITC channel.

Cell viability (MTS) assays in pancreatic cancer cell lines 
exposed to nanocurcumin
Growth inhibition was measured using the CellTiter 96®

Aqueous Cell Proliferation Assay (Promega), which relies on

the conversion of a tetrazolium compound (MTS) to a
colored formazan product by the activity of living cells.
Briefly, 2000 cells/well were plated in 96 well plates, and
were treated with 0, 5, 10, 15 and 20 μM concentrations
of free curcumin and equivalent nanocurcumin, for 72
hours, at which point the assay was terminated, and rela-
tive growth inhibition compared to vehicle-treated cells
measured using the CellTiter 96® reagent, as described in
the manufacturer's protocol. A panel of ten human pan-
creatic cancer cell lines were examined (BxPC3, AsPC1,
MiaPaca, XPA-1, XPA-2, PL-11, PL-12, PL-18, PK-9 and
Panc 2.03) in the MTT assays; the sources and culture con-
ditions of these ten lines have been previously described
[58]. All experiments were set up in triplicates to deter-
mine means and standard deviations.

Colony assays in soft agar
Colony formation in soft agar was assessed for therapy
with free curcumin and equivalent dosage of nanocurcu-

Nanocurcumin inhibits the clonogenic potential of pancreatic cancer cell linesFigure 10
Nanocurcumin inhibits the clonogenic potential of pancreatic cancer cell lines. Colony assays in soft agar were per-
formed comparing the effects of free and nanocurcumin in inhibiting the clonogenicity of the pancreatic cancer cell line, Mia-
Paca. Representative plates are illustrated for untreated cells (UT), void polymeric nanoparticle-treated cells (VP), free 
curcumin-treated cells (FC) and nanocurcumin-treated cells (NC), the last two at the equivalent of 10 μM curcumin dosage. All 
assays were performed in triplicates, and the mean ± standard deviations are presented.
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Nanocurcumin blocks activation of nuclear factor kappa B in pancreatic cancer cell linesFigure 11
Nanocurcumin blocks activation of nuclear factor kappa B in pancreatic cancer cell lines. Electrophoretic mobility 
shift assay (EMSA) or "gel shift" assay for assessment of NFκB inhibition in pancreatic cancer cell lines. Nuclear extracts were 
prepared from free curcumin (FC) and nanocurcumin (NC)-treated BxPC3 and MiaPaca cells, after 1 hour, 2 hours, 4 hours 
and 16 hours (overnight) exposure to the respective formulation. Inhibition of NFκB function is gauged by faster migration (i.e., 
absence of NFκB binding) of the radio-labeled kappa-binding oligonucleotide. In BxPC3 cells, inhibition of NFκB is seen as early 
as 1–2 hours following curcumin exposure in both free and nanoparticulate formulations. In contrast, in MiaPaca cells, inhibi-
tion of binding and consequent gel shift is seen only after overnight incubation in the nanocurcumin-treated cells, while no dis-
cernible gel shift is apparent in the free curcumin treated cells. TPA-activated Jurkat cells were used as positive control and 
untreated cells as negative control.
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Nanocurcumin downregulates steady state transcripts of multiple pro-inflammatory cytokinesFigure 12
Nanocurcumin downregulates steady state transcripts of multiple pro-inflammatory cytokines. Peripheral blood 
mononuclear cells (PBMCs) were activated with phytohaemagglutinin (PHA) and 1 μg/ml lipopolysaccharide (LPS), and exposed 
to either free curcumin or nanocurcumin at 20 μM. Thereafter, transcript levels of three pro-inflammatory cytokines IL-6, IL-8 
and TNFα were measured by real time quantitative RT-PCR analysis. For IL-6, semi-quantitative RT-PCR was also performed 
to confirm the real time data. IL-6 expression is completely abrogated by exposure to free curcuminand nanocurcumin (A). IL-
8 levels are also reduced with nanocurcumin therapy, albeit less than in free curcumin-treated PBMCs (B), while comparable 
and significant knockdown of TNFα transcripts is seen with both formulations(C). The error bars represent mean and stand-
ard deviations of experiments performed in triplicate.
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Nanocurcumin inhibits IL-6 synthesis in a dose-dependent mannerFigure 13
Nanocurcumin inhibits IL-6 synthesis in a dose-dependent manner. PBMCs of a healthy donor were incubated with 
PHA to stimulate T-cells, and LPS to trigger monocyte-derived cytokine production. Cells were exposed to increasing concen-
trations (0, 5, 10, 15 or 20 μM) of free or nanocurcumin, or equivalents amounts of DMSO or void nanoparticles, respectively 
for 24 h. Quantitative RT-PCR revealed dose-dependent inhibition of IL-6 mRNA synthesis by both curcumin formulations (A). 
Complete blockade of IL-6 transcripts was achieved by adding free or nanocurcumin at 20 μM, even in PBMC co-stimulated 
with PHA and LPS (B). The error bars represent mean and standard deviations of experiments performed in triplicate.

Free Curcumin

Nano Curcumin

5
 µ

M

1
0

 µ
M

1
5

 µ
M

2
0

 µ
M

U
n

tr
e
a

te
d

1
0
0
 b

p
 l

a
d

d
e
r

IL-6

IL-6

A)

B)



Journal of Nanobiotechnology 2007, 5:3 http://www.jnanobiotechnology.com/content/5/1/3
min. Briefly, 2 ml of mixture of serum supplemented
media and 1 % agar containing 5, 10 or 15 μM of free cur-
cumin and equivalent nanocurcumin was added in a 35
mm culture dish and allowed to solidify (base agar)
respectively. Next, on top of the base layer was added a
mixture of serum supplemented media and 0.7 % agar
(total 2 mL) containing 10,000 MiaPaca2 cells in the pres-
ence of void polymer, free or nano-curcumin, and was
allowed to solidify (top agar); a fourth set of plates con-
tained MiaPac2 cells without any additives. Subsequently,
the dishes were kept in tissue culture incubator main-
tained at 37°C and 5 % CO2 for 14 days to allow for col-
ony growth. All assays were performed in triplicates. The
colony assay was terminated at day 14, when plates were
stained and colonies counted on ChemiDoc XRS instru-
ment (Bio-Rad, Hercules, CA).

Electrophoretic mobility shift assay (EMSA)
Nuclear extracts were prepared as described [59]. Briefly,
double-stranded oligonucleotides containing a consensus
binding site for c-Rel (5'-GGG GAC TTT CCC-3') (Santa
Cruz Biotechnology) were 5' end-labeled using polynucle-
otide kinase and [32P]dATP. Nuclear extracts (2.5–5 μg)
were incubated with ≈1 μl of labeled oligonucleotide
(20,000 c.p.m.) in 20 μl of incubation buffer (10 mM Tris-
HCl, 40 mM NaCl, 1 mM EDTA, 1 mM β-mercaptoetha-
nol, 2% glycerol, 1–2 μg of poly dI-dC) for 20 min at
25°C. DNA-protein complexes were resolved by electro-
phoresis in 5% non-denaturing polyacrylamide gels and
analyzed by autoradiography.

Determination of IL-6, IL-8 and TNF-alpha synthesis
IL-6, IL-8 and TNF-alpha mRNA levels were assessed as
described previously [55]. Briefly, peripheral blood
mononuclear cells (PBMC) from a healthy donor were
isolated by centrifugation on a Ficoll Hypaque density
gradient (GE Healthcare Biosciences) and washed twice
with phosphate buffered saline (PBS; Invitrogen,
Carlsbad, CA). Next, 500,000 cells per well of a 24 well
plate in 1 ml of RPMI (Invitrogen) supplemented with
10% FBS (Invitrogen) and 1× Pen/Strep (Biofluids,
Camarillo, CA) were co-stimulated with 2% phytohae-
magglutinin (PHA M-Form, liquid; Invitrogen) and 1 μg/
ml lipopolysaccharide (LPS; Sigma-Aldrich, St. Louis,
MO) in the presence of free or nanocurcumin, using sol-
vent and void nanoparticles as controls, respectively. Cells
were lysed after 24 hours incubation at 37°C and 5% CO2
and RNA extracted using the RNeasy Mini Kit (Qiagen,
Valencia, CA). Relative fold steady-state mRNA levels were
determined on a 7300 Real time PCR System (Applied
Biosystems, Foster City, CA,) by RT-PCR as described [56].
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