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Abstract
The emergence and rapid spread of multidrug-resistant bacterial strains is a growing concern of public health. 
Inspired by the natural bactericidal surfaces of lotus leaves and shark skin, increasing attention has been focused 
on the use of mechano-bactericidal methods to create surfaces with antibacterial and/or bactericidal effects. There 
have been several studies exploring the bactericidal effect of nanostructured surfaces under various combinations 
of parameters. However, the correlation and synergies between these factors still need to be clarified. Recently 
machine learning (ML), which enables prediction or decision-making based on data, has been used in the 
field of biomaterials with promising results. In this study, we explored ML in nanotechnology to investigate the 
antimicrobial potential of nanostructured surfaces. A dataset of nanostructured surfaces and their antimicrobial 
properties was built by extracting the published literature. Based on the literature review and the distribution 
of our dataset, 70% bactericidal efficiency was selected as a practical benchmark for our classification model 
that balances stringent bactericidal performance with achievable targets in diverse conditions. Subsequently, 
we developed an ML classification model, which demonstrated an 81% accuracy in its predictive capability. A 
regression model was further developed to predict the value of bactericidal efficiency for nanostructured surfaces. 
Feature importance analysis of the ML models suggested that nanotopographical features have a greater influence 
on bactericidal properties than material properties, thus providing insight into the principles of the mechano-
bactericidal effect of nanostructured surfaces. Overall, this ML model tool could help researchers to effectively 
select and design the parameters of the surface structure prior to experimentation, thereby improving the 
timeliness and reducing the number of experiments and the associated costs.
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Introduction
In healthcare environments, infections can lead to 
increased morbidity, mortality, and healthcare costs, 
highlighting the need for stringent infection control 
practices [1]. Effective infection control measures are 
essential to prevent the spread of harmful pathogens and 
reduce the risk of nosocomial infections [2]. Within the 
context of bacterial contamination in medical and surgi-
cal fields, biofilm formation (surface-attached, structured 
microbial communities containing bacteria [3]) poses 
a significant challenge, as it can lead to the destruction 
of adjacent tissue, poor vascularization, implant loosen-
ing, detachment, and even dislocations [4]. These com-
plications often arise during surgical procedures when 
implants become particularly vulnerable to bacterial con-
tamination from the skin and mucous membranes. This 
susceptibility allows for the rapid progression of device-
associated infections, as planktonic bacteria initially 
adhere to the implant interface and eventually evolve 
into biofilms, further exacerbating the problem. The use 
of coatings on implant surfaces containing antibiotics or 
other bactericidal agents, such as heavy metals like sil-
ver, copper, or zinc, has gained popularity as a method 
to prevent microbial colonization on implants [5]. How-
ever, the emergence of antibiotic-resistant bacteria and 
the limitations of conventional disinfection methods have 
led to a growing need for alternative solutions to address 
bacterial contamination effectively [6].

Over the past decade, researchers have gradually begun 
to focus on the use of mechano-physical methods to cre-
ate surfaces with antibacterial and/or bactericidal effects. 
These mechano-bactericidal surfaces were bioinspired, 
and they were originally found on lotus leaves, shark skin, 
gecko skin, cicada wings, and dragonfly wings [7, 8]. The 
denticles (diamond-shaped scales covering the outer sur-
face) and arrangement on shark skin create a superhydro-
phobic surface that exhibits good anti-fouling properties 
by creating a surface that is not conducive to bacterial 
adhesion. In contrast, the highly ordered array of nano-
pillars or nanocones of different sizes, heights, and spa-
tial distribution on the wings of the cicada is capable of 
killing bacteria upon contact, creating a bactericidal 
effect [5, 9, 10]. It was proposed that the mechano-bac-
tericidal activity of nanostructured surfaces is the result 
of the mechanical interaction between the bacteria and 
the nanopatterns, which is governed by surface geometry. 
This creates the possibility of drug-free bactericidal sur-
faces [11].

One of the generally accepted theories of the bacteri-
cidal mechanism of nanostructured surfaces is a bio-
physical interaction between the bacterial cell wall and 
the nanopatterns. The geometry (e.g., diameters, height) 
and spacing of nanopatterns influence how the cell wall is 
ruptured: Dense and blunt nanopillars tend to overstretch 
the membrane of adhered bacteria, whereas sharp ones 
tend to directly impale the cells [5]. In addition, similar 
nanostructured surfaces may have different bactericidal 
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efficiencies for different bacteria because the membrane 
structures of Gram-negative and Gram-positive bacteria 
are considerably different: Gram-positive bacteria have 
an inner membrane and a thick peptidoglycan layer (20–
100  nm), while Gram-negative bacteria have an outer 
and inner membrane and an intermediate peptidogly-
can layer (only a few nanometres thick). Besides cell wall 
rupture, an alternative mode of Gram-negative cell wall 
disruption involves the separation of the cytoplasmic 
membrane from the cell wall, which may be mediated by 
adhesive extracellular polymeric substances (EPSs) and 
triggered by the forces originating from the movement 
of bacterial cells trapped on the crest of nanopillars [12]. 
There is now growing evidence that other factors may 
also be involved in the bactericidal mechanism of nano-
structured surfaces. For example, it has been discovered 
that mechanical injury is not sufficient to kill the bacte-
ria immediately due to the survival of the inner plasma 
membrane. Instead, such sublethal mechanical injury 
leads to apoptosis-like death in affected bacteria [10].

To date, these antibacterial and/or bactericidal nano-
structured surfaces have been fabricated from a wide 
range of materials including silicon [13], metals (e.g., tita-
nium [14], gold [15], and ZnO [16]), and polymers [17, 
18]. The fabrication methods for these synthetic nano-
structured surfaces often allow close control over the 
parameters that define the nanostructured surfaces (the 
height, spacing, and diameter of the nanopatterns) and 
lead to bactericidal efficiencies that frequently exceed 
those of natural nanostructured surfaces [19]. The key 
factors affecting mechano-bactericidal properties of the 
nanostructured surface can be divided into two aspects: 
[1] Topography: shape and size of nanopattern, surface 
roughness, and wettability [2, 5] Materials: elasticity, flex-
ibility, hydrophobicity, and lipophilicity. The bactericidal 
efficiency of nanostructured surfaces varies depending 
on the specific type of bacteria they are targeting. Addi-
tionally, one crucial inquiry concerning the bactericidal 
properties of nanopatterns involves determining the ideal 
design parameters that can maximize their bactericidal 
effectiveness while minimizing any potential negative 
impacts such as cytotoxicity [20]. However, the factors 
that determine the precise bactericidal activity of nano-
structured surfaces are intricate and remain largely unex-
plored, giving rise to numerous contentious conclusions. 
For example, wettability is an important parameter for 
the early attachment of bacteria to a surface, however, 
the exact relationship between hydrophobicity and bacte-
rial adhesion remains debatable. It has been shown that 
E. coli adhesion levels are highest on moderately hydro-
phobic surfaces (WCA = 95°) and lowest on hydrophilic 
(WCA < 30°) and superhydrophobic (WCA > 120°) sur-
faces [21]. Whereas antifouling surfaces usually prevent 
the adhesion of bacteria through their superhydrophobic 

properties, the same is true for many nanostructured sur-
faces. Another example is the currently prevailing pos-
tulation suggesting that the extent of membrane stretch 
increases with increasing diameters of nanopillars, but 
that the effect is minimal when the diameter exceeds 
20 nm [22]. However, there are also results from in silico 
studies showing that reducing the diameters from 30 to 
10 nm can increase the strain on the bacterial envelope 
by 25% [23]. These show that individual parameters of 
nanostructured surface are often entangled with other 
parameters, which makes the principle of bactericidal 
activity ambiguous.

There have been several studies exploring the bac-
tericidal effect of nanostructured surfaces under vari-
ous combinations of parameters. Some researchers 
conducted a comprehensive analysis to examine the rela-
tionship between the bactericidal activity of bacterial 
species and the various parameters tested on nanostruc-
tured surfaces [24]. However, their analysis was limited 
to a single-factor examination, and although it revealed 
the impact of different factors on bactericidal perfor-
mance, it did not elucidate the direct correlation and 
synergistic effects among these factors. Understanding 
the impact of these factors on bactericidal efficiency is of 
great significance because it can help researchers better 
design nanostructured surfaces with targeted bactericidal 
effects. Machine learning (ML) is a branch of artificial 
intelligence (AI) that involves the development of algo-
rithms and models capable of learning from and making 
predictions or decisions based on data [25]. Employing 
data analysis techniques based on ML principles could be 
a useful solution to this problem. Therefore, ML models 
are increasingly being utilized to address a diverse range 
of challenges in biomedical science and material science 
research [26]. For example, ML models have been used 
for predicting the cytotoxicity of nanomaterials [27] and 
predicting nanoparticle delivery to tumours [28]. ML 
methods use mathematical and statistical tools to iden-
tify and utilize the connections within the data, allowing 
for the creation of intricate models to describe the system 
[29].

Although ML has demonstrated its potential for wide-
spread application, only a few studies applied ML to the 
development of nanosurfaces. To the best of our knowl-
edge, our study is the first to use ML techniques to pre-
dict the antimicrobial properties of nanostructured 
surfaces. We aim to use ML to aid the prediction of the 
bactericidal efficiency of nanostructured surfaces and 
determine the optimum parameters for nanostructured 
surfaces to achieve superior mechano-bactericidal prop-
erties. An essential advantage of utilizing ML is that it 
enables experimenters to precisely define the range of 
experimental parameters, thereby substantially reducing 
the time, resources, and laboratory animal usage involved 
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in these endeavours. Furthermore, we focus on the fea-
ture importance of the ML model and interpretation, and 
explore the mechanisms of bactericidal activity on nano-
structured surfaces.

Results
Data acquisition
After a comprehensive review of 2,919 publication lit-
erature, 45 papers were selected and considered relevant 
to this research. 293 different nanostructured surfaces 
were studied in terms of substrate material, nanostruc-
ture shape and size, and surface hydrophobicity. The 
raw dataset is provided in Table S5. Data distribution of 
experiment parameters in the database was visualized 
by histograms and kernel density estimation (KDE) plots 
(Fig. S1). As depicted in the figure, some outliers existed 
in the database. For example, most nanopatterns are 
found in the height range 0–6500 nm, but a few reached 
32,000 nm.

Titanium and silicon were the main choices of substrate 
materials for the fabrication of nanostructures. In con-
trast, the dataset is more evenly distributed among the 
bacterial species, centred on E. coli, P. aeruginosa, and S. 
aureus (Fig. 1). Of these, 121 were studies of Gram-posi-
tive bacteria and 173 were studies of Gram-negative bac-
teria. The nanopattern is also more evenly distributed in 

terms of shape, consisting mainly of pillar, but also partly 
of tube, cone, wire, spike, etc. There are 192 surfaces that 
are hydrophilic with a WCA ≤ 90° and 102 hydrophobic 
surfaces with a WCA > 90°. Details of the dataset can be 
found in the supplementary information.

Data pre-processing
The primary dataset comprised 293 rows and 12 col-
umns (11 inputs, 1 output). The input data consisted of 
diameter (nm), height (nm), spacing (nm), aspect ratio, 
surface roughness (nm), water contact angle (WCA) (°) 
reported in numeric values. Variables with nominal val-
ues included materials, shape of nanopatterns, bacteria 
Strain, Gram-stain type motility, and shape of bacteria as 
summarized in Tables 1, 2 and 3.

Input transformation
For materials of nanostructured surfaces, a simplified 
classification has been made due to the wide variety con-
tained, e.g. Ti, Ti6Al4V, TiOH and TiO2 are classified as 
Ti-based.

For nanotopogrpahy, the features such as diameter, 
height, spacing and aspect ratio are a good representa-
tion of the shape of the nanopattern, thus these features 
have been retained and the shape of the nanopattern has 
been eliminated. Surface roughness has approximately 

Table 1  Summary of the primary and final input variables of materials parameters in data pre-processing
Raw Data Data Transformation Data-

set I
Category Features Type Range or Labels
Materials Materials Nominal Ti, TiO2, Ti-OH, Ti6Al4V, Si, PET, 

CaP, ZnO, Pd, C, PS-b-P2VP, 
PS-block-PMMA

Simplified Ti, Si, 
CaP, 
ZnO, 
Pd, C, 
Polymer

Fig. 1  Data distributions of (a) Shape, (b) Materials, and (c) Bacteria Species
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90% or more missing values and was therefore excluded. 
Diameter, height, spacing, aspect ratio, and WCA all had 
less than 30% missing values and were retained for the 
next data imputation process.

Similarly, the Gram-stain type, motility and shape are 
representative of the bacterial membrane structure, 
therefore these three features are selected as input and 
the name of bacterial species is eliminated.

Output transformation
We chose 70% as a threshold for our classification model 
building. This threshold is not arbitrarily set but is a 
reflection of a consensus within the nanobactericidal sur-
face research community. We specifically referenced sev-
eral articles that included nanobactericidal surfaces with 
more than five different parameters rather than a single 
morphology [30–38]. The distribution of bactericidal 
efficiency in these experiments was relatively uniform 
from 0 to 100%, with efficacious surfaces concentrated 
in the range of 60–80%, with 70% emerging as a practi-
cal benchmark that balances stringent bactericidal per-
formance with achievable targets in diverse conditions. 
Thus, for regression models we kept the percentage of 
bactericidal efficiency as output features; for binary clas-
sification models we simplified the numeric bactericidal 

efficiency to 2 classes, i.e. whether it is a successful bacte-
ricidal surface.

Classification model building
Model selection was critical for the accuracy of ML pre-
diction, and we have chosen seven state-of-the-art algo-
rithmic models for predicting the bactericidal efficiency, 
which included K-nearest neighbor (KNN), support vec-
tor machine (SVM), extreme gradient boost (XGBoost), 
gradient boosting machine (GBM), random forest (RF), 
multilayer perceptron (MLP) for classification model-
ling and ridge regression (RR), XGBoost, GBM, KNN for 
regression modelling [30–33]. A brief summary is illus-
trated in Fig. 2 and explained in Table 4.

Preliminary modelling
After the initial screening, the missing values were 
imputed, using 5 different imputation strategies: None, 
Leave empty, Mean, KNN and RF (Explained in detail 
in the method section). Performances of different data 
imputation methods were compared, as shown in Fig. 3. 
It can be seen from the plots that different data imputa-
tion methods did affect model performance. Of the three 
active filling blank methods, RF performed the best, with 
the highest accuracy and F1 scores. The ‘None’ group had 

Table 2  Summary of the primary and final input variables of nanotopography parameters in data pre-processing
Raw Data Data Transformation Dataset I

Category Features Type Range or Labels
Nano topography Shape Nominal Pillar, wire, pore, tube, cone, rod, 

octahedra,
lozenges, squares, sheet, spike

Eliminated, use other 
features instead

-

Diameter Numeric 5.41–1000.00 (nm), NA Selected 5.41–1000.00 (nm), 
NA

Height 10.00-32000 (nm), NA 10.00-32000 (nm), NA
Spacing 4.82–2000.00 (nm), NA 4.82–2000.00 (nm), 

NA
Aspect Ratio 0.0003-4.00, NA 0.0003-4.00, NA
Surface Roughness 0.69–2296.00 (nm), NA Eliminated due to high 

NA
-

Water Contact Angle 0-160 (°), NA Selected 0-160 (°), NA

Table 3  Summary of the primary and final input variables of bacteria features in data pre-processing
Raw Data Data Transformation Dataset I

Category Features Type Range or Labels
Bacteria Bacteria Strain Nominal E.coli, P. aeruginosa, S. aureus, S. 

epidermidis, B. subtilis, F. nuclea-
tum, E. faecalis, P. gingivalis, L. 
monocytogenes, K. pneumoniae, 
C.auris, M. smegamatis

Eliminated, use other features 
instead

-

Gram-stain type Positive, Negative Selected Positive, 
Negative

Motility Motile, Nonmotile Motile, 
Nonmotile

Shape Rod, Spherical Rod, 
Spherical
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a high precision, which means the high credibility of a 
claim that a case is positive. However, it has a relatively 

low recall, which indicates some false positives. While 
the ‘leave empty’ group was more evenly split across all 
indicators. Further comparison of the results of their 
10-fold cross-validation revealed that the mean accuracy 
of the different imputations showed little difference, sta-
bilising at around 78%. Therefore, the ‘None’ group, the 
‘leave empty’ group and the RF group were retained for 
the model building to further compare the impact of 
the data imputation methods on the performance of the 
models.

Table 4  Enumeration dataset parameters for Ti-based 
nanostructured surfaces targeting Gram-negative bacteria
Features Range Step length
Height(nm) (0,3600) 100
Diameter(nm) (0,500) 50
Spacing(nm) (0,800) 50
Aspect ratio (0,4) 0.5
WCA(°) (0,180) 10

Fig. 3  (a) Model performance of different data imputation methods evaluated by accuracy, precision, recall and F1 score, (b) Model performance 
of the different data imputation methods was assessed by the average accuracy obtained from 10-fold cross-validation. Error bars are from 10-fold 
cross-validation

 

Fig. 2  Illustration of the various ML methods used in the study. (a) K-nearest neighbour (KNN). (b) support vector machine (SVM). (c) ridge regression (RR). 
(d) Random Forest (RF) (e) Gradient boosting machine (GBM) and extreme gradient boosting (XGBoost). (f) Multilayer perceptron (MLP)
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After data transformation the following three data-
sets were obtained for the model building step: Dataset 
I (n = 294, Leave empty group); Dataset II (n = 294, RF 
group); Dataset III (n = 140, None group). To further build 
a regression model to predict the bactericidal efficiency 
of successfully bactericidal surfaces, we extracted data for 
the RF group with a bactericidal efficiency greater than 
70% as Dataset IV (n = 105).

Classification model building
Following preliminary modelling, we trained various 
classification models, and all model parameters were 
tuned to the best combination. By traversing all the 
model parameters, the best combination of parameters 
is selected (see Table S1). Model performance results are 
summarized in Fig.  4 and Table S3. The results suggest 
that the XGBoost and GBM models exhibit overall higher 
accuracy and less fluctuation, which indicated a more 
stable performance compared to the other algorithms 
employed (KNN, SVM, and MLP). It is quite interesting 
to note that most of the models built are high-accuracy 
but low-recall systems, returning very few results, but 
most of its predicted labels are correct when compared 
to the training labels. In comparison, XGBoost-I, II and 
GBM-III show high accuracy rates of 0.76, 0.78 and 0.93 
respectively, and relatively high precision and recall.

We then compared the 10-fold validation results of the 
XGBoost and GBM models (Fig. S2). The GBM-III and 
XGBoost-III models have the highest average accuracy of 
0.81 and 0.80 respectively, while XGBoost-III has smaller 

variation, representing greater precision. Therefore, the 
GBM-III model had the best overall performance, with 
an average accuracy of 0.81.

To further test the performance of the model with dif-
ferent data imputation methods, we compared the con-
fusion matrixes to assess the performance of XGBoost 
models (XGBoost-I, II, III). The confusion matrices for 
XGBoost-I and II are identical (Fig. S3), indicating that 
using RF as a data imputation in this study is a non-infe-
rior approach.

Subsequently, we utilised four new enumeration data-
sets (Ti-based nanostructured surfaces against Gram-
negative bacteria, Ti-based nanostructured surfaces 
against Gram-positive bacteria, Si-based nanostructured 
surfaces against Gram-positive bacteria and Si-based 
nanostructured surfaces against Gram-negative bacteria 
with 829,448 datapoints in each dataset) to gain further 
insights into the nanostructured parameters and bac-
tericidal efficiency of the nanostructure parameters and 
bactericidal efficiency. Based on the GBM-III models, 
we used the enumerated dataset to create a bactericidal 
efficiency map (Fig. 5). According to the figure, most of 
the high bactericidal efficiency surfaces, both Ti-based 
and Si-based materials, have polar WCAs, i.e., superhy-
drophilic and superhydrophobic. The nanostructured 
surfaces are overall more efficient in bactericidal activi-
ties for Gram-negative bacteria than for Gram-positive 
bacteria. In addition, the diameter of highly bactericidal 
surfaces is typically less than 200 nm.

Fig. 4  Classification model performance evaluated by accuracy, precision, recall and F1 score
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Feature importance analysis and model interpretation
Overview of feature importance
Interpreting the model provides valuable insights into 
its learning characteristics. Feature importance learnt 
by the GBM-III model was plotted to represent the ML’s 
interpretation of the correlation between different fea-
tures and bactericidal efficiency. The feature importance 
of the XGBoost-I, III; models were also analysed and 
used to compare the differences between the conclu-
sions drawn under the different algorithms. The feature 
importance analysis for both models yielded similar con-
clusions (Fig.  6), showing that the top four importance 
rankings for both models were WCA, height, diameter 
and aspect ratio, all of which are features of nanotopog-
raphy. This suggests that nanotopography is indeed the 
main factor dominating the bactericidal activity of nano-
structured surfaces, which is also consistent with the 
mechano-bactericidal concept mentioned previously. For 

WCA, the feature importance is 20.8%, 27.7%, and 20.6% 
in the XGBoost-I, III; and GBM-III models, respectively. 
Although the majority of surfaces in the dataset were 
hydrophilic, the least-tested hydrophobic surfaces have 
shown higher success rates than their hydrophilic coun-
terparts. The possible reason is that hydrophobic and 
hydrophilic surfaces have different mechanisms of bacte-
rial inhibition, as mentioned previously, one preventing 
bacteria from adhering and the other killing them when 
they do, but the different inhibition mechanisms achieve 
the same purpose.

Model interpretation for topographical features
Figure 7 shows the Shapley additive explanations (SHAP) 
of topographical features. SHAP values is a unified frame-
work to interpret ML predictions proposed by Lundberg 
and Lee [30], to describe how much each feature contrib-
utes to the predictions. In this ML model, the SHAP and 

Fig. 5  Bactericidal efficiency prediction map: (a) Ti-based nanostructured surfaces against Gram-negative bacteria, (b) Ti-based nanostructured surfaces 
against Gram-positive bacteria, (c) Si-based nanostructured surfaces against Gram-positive bacteria, and (d) Si-based nanostructured surfaces against 
Gram-negative bacteria
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Fig. 7  SHAP values analysis summary for XGBoost-III model. (a) SHAP values of different features show their contributions to the model output on the 
local scale. Impact: The horizontal location shows whether the effect of that value is associated with a higher or lower prediction; Original value: Colour 
shows whether that variable is high (in red) or low (in blue) for that observation; (b) SHAP summary force plot for WCA effects; SHAP dependence plots 
articulate the intricate relationship between the (c) WCA and Gram types, and (d) Spacing and Gram types

 

Fig. 6  Feature importance distribution of (a) XGBoost-I, (b) XGBoost-III, (c) GBM-III model
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feature values of the WCA are evenly distributed on the 
x-axis (Fig. 7a), while it can be concluded from the distri-
bution of high feature value points that high WCA has a 
certain positive effect on bactericidal efficiency. Figure 7b 
elaborates on the variability in the impact of WCA on 
the model’s output across different samples. The analysis 
highlights that WCA values contributing positively to the 
model’s output predominantly fall within the ranges of 
0–10 degrees or 160–180 degrees, as indicated by the red 
zones in the plot. These ranges correspond to surfaces 
that are extremely hydrophilic or hydrophobic, respec-
tively, both of which are considered beneficial for bacte-
ricidal activity. Conversely, WCA values situated around 
the median, predominantly encapsulated within the blue 
zones of the plot, are associated with a negative impact 
on the output value. This suggests that surfaces with 
median WCA values may represent a less effective or 
undesirable range for bactericidal applications, indicating 
a complex relationship between surface wettability and 
bactericidal efficiency that is dependent on the extremity 
of the hydrophilic or hydrophobic nature of the surface.

Height and diameter are directly related to the bac-
teria-nanopattern contact area, while the tip size of the 
nanopattern is very important as it is the first point of 
contact between the bacteria and the surface [43]. The 
ML model shows that both diameter and height are posi-
tively correlated with bactericidal efficiency. Some stud-
ies based on analytical models support our conclusions, 
which suggest that a larger radius provides a wider con-
tact area, driving the suspended region of the membrane 
to attempt to accommodate the change in the perimeter 
by stretching and eventually rupturing [23, 44]. However, 
smaller tip radius could induces higher pressure on the 
bacterial membrane, enhancing the bactericidal effect of 
the nanostructured surface [5].

The SHAP values for aspect ratio indicate that high 
aspect ratios have a positive effect on bactericidal effi-
ciency. This is in line with Linklater et al. study [22], 
which demonstrated that the flexibility of a high aspect 
ratio structure enhances the elastic energy storage of the 
nanostructure and releases this energy through bending 
when in contact with bacteria, thereby increasing the 
bactericidal activity of the nanostructured surface.

Model interpretation for material properties and bacterial 
species
It is noteworthy that the material properties of the nano-
structured surface account for a small proportion of the 
feature importance. This corresponds to the mechanisms 
revealed from some experimental approaches, i.e. the 
mechano-bactericidal mechanism on nanostructured 
surfaces is independent of chemical effects, as the func-
tionality (bactericidal ability) was shown to persist across 
materials [7]. However, recent studies have suggested 

that biological and chemical processes also play a syner-
gistic role in the bactericidal activity of nanostructured 
surfaces [45–47]. For example, Jenkins et al. proposed a 
synergistic ROS-mediated mechanism of mechano-bac-
tericidal activity, which involves chemistry at the bacte-
rial level, in contrast to the purely mechano-bactericidal 
model currently proposed [46].

Furthermore, the species of bacteria as a biological fac-
tor is not of high importance in the ML model, a possible 
reason is the limited dataset, which focuses on only a few 
specific bacteria. Whereas it is now generally accepted 
that Gram-negative bacteria are more vulnerable to the 
bactericidal effects of nanostructures than Gram-positive 
bacteria because of the differences between their bacte-
rial membrane structures. In the SHAP dependence anal-
ysis (Fig. 7c and d), we posit that Gram-positive bacteria 
demonstrate increased sensitivity to hydrophilic surfaces 
with nanostructured spacing below 250  nm. While the 
SHAP dependence plot distribution for Gram-negative 
bacteria in relation to WCA and spacing appears rela-
tively dispersed.

Individual data points analysis and comparative analysis
To enhance the comprehension of why certain features 
exhibit a more pronounced impact than others within 
our dataset, we employed an analysis of individual SHAP 
value plots corresponding to specific data points. We 
selected three representative data points for this analy-
sis, two of which are presented below, with the remaining 
details provided in Fig. S5 (Tables 5 and 6).

Case 1: Silicon-based nano pillar against P. Aeru-
ginosa  Figure  8 illustrates that ‘Height’ has a signifi-
cant positive SHAP value, indicating that as the height 
of the nanostructures increases, it contributes more to 
the model’s prediction of bactericidal efficiency against 
P.aeruginosa cells. This aligns with the conclusion in this 
study [12], which suggests that higher nanostructures on 
surfaces lead to a decrease in bacterial adhesion due to 
reduced contact area between the bacteria and the sub-
stratum.

In contrast, ‘Material’ has a minor impact on the output 
value, which is consistent with the previous reports stat-
ing that the nanoscale topography influences bacterial 
attachment behaviour, orientation, and the expression of 
attachment organelles (fimbriae), with a preference for 
certain substratum types [49].

The importance of height in these figures supports the 
notion that the physical dimensions of surface nanoar-
chitecture and material stiffness are critical factors in the 
adhesion and potential killing of bacterial cells.

Case 2: Titanium-based nano tube against P. Aerugi-
nosa  In this case, the dimensions, specifically the diam-
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eter and height, of the nanostructures used in the data-
set are significantly smaller relative to the overall range 
observed. In Fig. 9, although the ‘GS’ feature exerts a sig-
nificant positive effect on the output value, the adverse 
impacts attributable to both ‘Diameter’ and ‘Height’ on the 
bactericidal effectiveness of the nanostructures culminate 
in a final model output of zero. The study that includes 
this case involved assessing the bactericidal efficiency 
of nanostructures with identical structural parameters 
against various bacterial strains. Notably, the nanostruc-
tures demonstrated enhanced effectiveness in eliminating 
Gram-positive bacteria.

Furthermore, the positive impact associated with ‘GS’ 
indicates that the model identifies the presence of Gram-
negative bacteria as a factor reducing the likelihood of 
poor bactericidal performance, which is in alignment 
with the conclusion of the study [48]. While the SHAP 
value analysis for ‘WCA’, suggests a negligible role of this 
feature in bactericidal efficiency. The implication is that 
surfaces do not exhibit extreme hydrophilicity, therefore 
having a relatively minor impact. The insights from the 
model support the observation that sharp, elongated 
nanostructures can disrupt bacterial cells non-selectively, 
whereas shorter, blunt structures might necessitate more 
precise interactions to overcome the defences of different 
bacterial species, reflecting their adaptation to the eco-
logical niches they inhabit [30].

In addition, we performed a comparison of the SHAP 
values for both the XGBoost and MLP algorithms by 
examining them in each case, as illustrated in the accom-
panying Figs. 8 and 9 and Fig. S4. The consistency of the 
results across these scenarios underscores the robustness 
and interpretative capability of our model.

Regression model building
Based on the results of the classification model, a regres-
sion model was further developed for nanostructured 
surfaces with bactericidal efficiency greater than 70%. 
Figure 8 shows the distribution of bactericidal efficiency 
in the dataset and the range of data targeted by the clas-
sification/regression model.

By traversing all the model parameters, the best com-
bination of parameters is selected (see Table S2). The 
performance results are summarised in Fig. 9 and Table 
S4. As mentioned above, lower RMSE and MAE values 
indicate better predictive performance, while higher R2 
values indicate a better fit of the model to the data and a 
better overall adaptation to the data. Of the four models, 
the XGBoost regression model had an outstanding per-
formance with the lowest RMSE and MAE and the high-
est R2 (50%). The relatively low R2 values observed in 
the table may be attributed to the limited amount of data 
available for analysis (Figs. 10, 11, and 12).
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The regression model showed consistent performance 
on both the training and test sets, with all predictions 
within a relative error of ± 20%, except for one data from 
the test set (Fig. 10). This demonstrates the model’s ability 
to withstand overfitting trends and enhances its potential 
for real-world applications.

Discussion
In this study, we implemented an ML model from data 
collection to model validation, to predict the bactericidal 
effects induced by nanostructured surface in in-vitro sys-
tems. We propose the concept of drawing patterns from 
existing studies on the bactericidal properties of nano-
structured surface to guide future research. In the con-
ventional materials research process, the selection of 

Table 6  Machine learning models frequently used in the biomedical field
Model Synonym Model 

Category
Description Tuning 

Parameters
K-nearest 
neighbors

KNN Simple 
model

Each feature value corresponds to a specific coordinate. The classification process 
consists of identifying the K nearest neighbours of a given data point and assigning it 
the most prevalent label among these neighbours [39].

K

Support vec-
tor machine

SVM Support vec-
tor machine

In SVM, each data item is plot as a point in an n-dimensional space with the value of 
each feature related to the value of a specific coordinate. It performs classification by 
finding the hyper-plane that differentiates the two classes [41].

C

Stochastic 
Gradient 
Boosting

GBM Ensemble 
model

By combining multiple weak learners, GBM creates a powerful ensemble model. 
In classification, it uses a specific loss function to process the classification results, 
providing high accuracy and flexibility [56].

n.trees; shrinkage; 
n.minobsinnode

eXtreme 
Gradient 
Boosting

XGBoost Ensemble 
model

XGBoost is an optimised and enhanced version of GBM that enhances the gradient 
boosting algorithm by introducing regularisation, sparsity awareness, parallel learn-
ing, missing value handling and tree pruning [40].

max_depth; 
n_estimators; 
learning_rate; col-
sample_bytree…

Multilayer 
Perceptron

MLP Feedforward 
artificial neu-
ral network

The MLP incorporates a series of hidden layers positioned between the input and 
output layers, forming a directly connected mechanism. This allows data to flow 
forward through the network, resembling a feed-forward network structure [42].

hidden_layer_size

Fig. 8  Comparative Analysis of Individual SHAP Values for the XGBoost-III Model and MLP-III Model - Case 1: (a) Individual SHAP force plot for XGBoost-III 
Model; (b) Individual SHAP force plot for MLP-III Model; (c) Individual SHAP decision plot for XGBoost-III Model; (d) Individual SHAP decision plot for MLP-III 
Model
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Fig. 10  Sequence of Classification and Regression model that predicts bactericidal efficiency of nanostructured surface. The classification model deter-
mines whether the nanostructured surface is capable of effective bactericide, i.e., whether the bactericidal efficiency is greater than or equal to 70%. The 
regression model predicts values of bactericidal efficiency for nanostructured surfaces with > 70% bactericidal efficiency

 

Fig. 9  Comparative Analysis of Individual SHAP Values for the XGBoost-III Model and MLP-III Model - Case 2: (a) Individual SHAP force plot for XGBoost-III 
Model; (b) Individual SHAP force plot for MLP-III Model; (c) Individual SHAP decision plot for XGBoost-III Model; (d) Individual SHAP decision plot for MLP-III 
Model
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material candidates and topologies is entirely dependent 
on the developer’s intuition, and these materials need to 
be prepared and tested successively; this leads to ineffi-
ciencies, high error rates, and high costs [50]. Indeed, the 
further development of our model can help researchers 
in the field of nanostructured surfaces to save experi-
mental resources and time costs. By analysing the feature 
importance derived from our model, researchers can 
gain insights into which parameters most significantly 
impact bactericidal efficiency. This can help in designing 

experiments that specifically target these influential 
factors, thereby optimizing the allocation of resources 
towards experiments that are most likely to yield signifi-
cant findings. The predictive model can be used to gen-
erate hypotheses regarding the underlying mechanisms 
driving bactericidal effectiveness. For example, if the 
model identifies a specific nanotopography parameter 
as particularly influential, experimental work can be tai-
lored to investigate how this parameter affects bacteria at 

Fig. 12  Predictions given by XGBoost model based on the data records in the Database IV. The red line shows perfect predictions where the ground truth 
values equal to predictions. The coloured area indicates the relative error range (± 20% and ± 50%) for the predictions

 

Fig. 11  Regression model performance evaluated by (a) RMSE, MAE and (b) R2
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the molecular or cellular level, leading to a deeper under-
standing of the interaction mechanisms.

As new materials are developed, our model provides 
a benchmark for predicting their potential bactericidal 
efficiency based on their properties and the bacteria type 
they are intended to target. This predictive capacity can 
streamline the initial screening process for novel mate-
rials, prioritizing those with the highest predicted effi-
cacy for further experimental validation. Furthermore, 
by outlining the predictive relationships between various 
parameters and bactericidal efficiency, our model serves 
as a platform for fostering collaboration between mate-
rials scientists, microbiologists, and nanotechnology 
researchers. This interdisciplinary approach can lead to 
the development of more comprehensive experimental 
studies that consider a wider range of variables and their 
interactions.

The availability of data in materials science and other 
fields has long been a key issue, thus the recent concerted 
efforts have been focused on finding ML algorithms 
applicable to small datasets [51]. However, objectively 
comparing nanostructured surfaces with different param-
eters becomes more challenging due to the lack of stan-
dardized test methods to assess their performance [52]. 
While several valid methods may be available, provided 
they provide relevant information for the intended appli-
cation, the lack of standard test conditions hinders direct 
comparisons between new techniques. Ideally, these 
standard conditions should be established and expanded 
to discover and verify the true effectiveness and utility 
of materials. Several ongoing initiatives are developing 
frameworks, methods and criteria for assessing the qual-
ity of reported data, based on the FAIR (Findable, Acces-
sible, Interoperable, Reusable) data principles [53]. This 
may overcome the lack of data in the materials field and 
allow different studies to be compared more directly.

This research pragmatically proposes a different 
approach by developing prediction tools using well-
established ML algorithms but comparing the impact 
of different data imputation methods on model per-
formance. The rational data imputation method here 
allows us to apply the ML model to a larger dataset, thus 
improving the accuracy of the model.

Our dataset is drawn from a variety of published 
research, including different experimental setups being 
used by different research groups. This diversity of exper-
imental setups enhances the generalization capabilities of 
our ML models.

The goal of our future work is to attempt to quantify 
the features of biological processes between nanostruc-
tured surfaces and bacteria in order to optimize the fea-
ture engineering of the ML model.

Conclusion
In this study, we have successfully applied data extracted 
from the literature to build effective ML models to pre-
dict the antimicrobial properties of nanostructured sur-
faces, with gradient boosting machine (GBM) being the 
best model (The accuracy rate reached 81%). A regres-
sion model was further developed for nanostructured 
surfaces with bactericidal efficiency greater than 70% to 
further predict the value of bactericidal efficiency, with 
XGBoost being the best model. The feature importance 
analysis and the interpretation of the ML models suggest 
that the WCA is the most important feature, followed by 
nanotopography (e.g., diameter, height). We then anal-
ysed the interrelated features by calculating SHAP values 
to further understand the mechanism of mechano-bacte-
ricidal properties, and results showed that WCA, diam-
eter, height and aspect ratio are positively correlated with 
bactericidal efficiency, while spacing is the opposite. We 
also highlight the need for standardized measurements to 
evaluate the antimicrobial properties of nanostructured 
surfaces, allowing more consistent metadata. Overall, 
this is the first study of applying ML algorithms in the 
field of nanostructured surface, which assists research-
ers in taking advantage of developments in the field of 
artificial intelligence, thereby improving timeliness, and 
reducing the number of experiments performed and the 
associated costs.

Methods
Data Collection
A literature search was conducted to identify stud-
ies examining the effects of nanostructured surfaces on 
bacterial elimination or inhibition. The collected articles 
were published up to March 2023, encompassed various 
keywords, including “antibacterial,” “antimicrobial,” “bac-
tericidal,” “nanopattern,” “nanopatterned topography,” 
“nanostructure,” “nanostructured surface,” “nano-coat-
ing,” and more. The initial screening of articles was based 
on the title and abstract, followed by a secondary screen-
ing after thoroughly reading the full text.

Inclusion criteria
To be included in the analysis, studies had to meet both 
of the following requirements:

 	• Fabrication of nanoscale structures on surfaces.
 	• Conducting bacterial viability tests on these 

nanostructured surfaces.

Exclusion criteria
Studies were typically excluded from the analysis based 
on the following factors:



Page 16 of 19Chen et al. Journal of Nanobiotechnology          (2024) 22:748 

 	• Absence of bacterial viability quantification or 
unspecified method.

 	• Absence of surface topography quantification or 
unspecified method.

 	• Unrelated studies on the bactericidal activity of 
nanostructured surfaces.

 	• Presence of antibiotics or chemically active coatings 
on surfaces that contribute to bactericidal activity.

 	• Experiments are carried out under dynamic 
conditions, such as fluid flow, agitation, and so on.

Data extraction
Each paper was reviewed with a focus on:

 	• Surface: materials, surface wettability, and surface 
roughness.

 	• Nanopattern: fabrication method, nanopattern tip 
dimension (width or diameter), and height, spacing.

 	• Bacteria viability: species, Gram-stain type, motility, 
and shape.

The above variables were acquired as input attributes for 
the prediction of the bactericidal efficiency of the inves-
tigated nanostructured surface. For the evaluation of 
bactericidal efficacy, we have comprehensively integrated 
quantitative evaluations derived from a diverse range of 
detection methods and techniques. The bacterial effi-
ciency of most studies is calculated based on indicators 
such as bacterial viability, zone of inhibition (ZOI), and 
optical density (OD).

Data pre-processing
Data imputation
Because our data is extracted from published research 
articles, inevitably it contains a considerable number of 
missing values due to different research strategies and 
incomplete reporting of parameters. Thus, five differ-
ent strategies were implemented to handle the missing 
values.

 	• None: The None method directly deleted all records 
that contained missing values for comparison of 
performance.

 	• Leave empty: The leave_empty method left the 
records with missing values as ‘‘NaN” in the database 
without any processing.

The other three of them were actively filling the blank 
values through different data imputation techniques:

 	• Mean: The Mean method, as suggested by its name, 
used the mean value of that variable in the database 
to fill the blank.

 	• K-nearest neighbour (kNN): the kNN method 
imputed the missing values with the average of k-th 
most ‘‘similar” experiment.

 	• Random Forest (RF): The RF method, which built 
on random subsets of the available features and data 
samples, can provide accurate estimates for missing 
values by considering the information contained 
within the remaining variables [54].

One hot encoding
In numerous instances, algorithms encounter difficulties 
in effectively managing categorical values, as the major-
ity of them necessitate numerical inputs to attain optimal 
outcomes. Consequently, in this research, the conver-
sion of categorical variables, such as materials, bacterial 
motility, and bacterial shape, into numerical dummy vari-
ables or integers is essential.

ML algorithms frequently interpret the order of inte-
gers as a significant feature, which can pose challenges 
when addressing categorical data that lacks inherent rela-
tionships or rankings. In our situations where categori-
cal values are devoid of a natural hierarchy, employing 
one-hot encoding proves advantageous to circumvent 
issues related to predictions and performance. To execute 
one-hot encoding, dummy variables were generated for 
each categorical column, and these new columns were 
subsequently integrated into the primary data frame. Uti-
lizing binary values of 0 and 1, the absence or presence 
of the original attributes were denoted, respectively. This 
encoding method ensures that the categorical data can 
be effectively processed by machine learning algorithms 
without generating erroneous assumptions concerning 
the relationships among categories.

Data split
For a supervised computational algorithm, a training set 
and a test set are initially provided. We randomly divide 
the data into two groups, one for training the model 
(training dataset) containing 70% of the dataset and the 
rest (30%) for testing performance (testing dataset).

Classification model building and validation
The classification technique constructs a model with the 
ability to classify new instances into predefined catego-
ries based on the input variables. Classification model-
ling involves the task of learning a mapping function 
from inputs to discrete output categories. In this study, 
machine learning algorithms map the nanotopogrpahy 
of nanostructured surfaces and the functions of the tar-
geted bacterial properties to their bactericidal activity, 
thus enabling prediction of the bactericidal efficiency. 
To develop our model and determine the most accurate 
predictions, we explored several supervised classification 
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algorithms as potential candidates, including KNN, SVM, 
GBM, XGBoost, MLP, and RR. Models were built in 
Python version 3.9.13, Scikit-learn version 0.24.1.

Preliminary modelling
Since XGBoost can manage missing values in the input 
data, enabling it to learn from incomplete datasets, it 
allows for a fair and unbiased comparison of various 
imputation methods by evaluating their impact on the 
model’s performance. Thus, we choose XGBoost to do 
the comparison of different imputation strategies, and 
accuracy, precision, recall and F1-score are set as metrics 
to evaluate the model’s performance, i.e., to indicate how 
accurately the model classifies positive and negative sam-
ples. They were calculated by:

	
accuracy =

(TP + TN)
(TP + TN + FP + FN)

	
precision =

TP

(TP + FP )

	
recall =

TP

(TP + FN)

	
F1 Score = 2 × (precision × recall)

(precisio + recall)

where True Positives (TP) are instances where the model 
correctly predicts the positive class; True Negatives (TN) 
are instances where the model correctly predicts the 
negative class; False Positives (FP) are instances where 
the model has falsely identified a negative instance as 
positive, leading to a false alarm; False Negatives (FN) are 
instances where the model has failed to identify a positive 
instance, resulting in a missed detection.

Thereafter, 10-fold cross validation was applied to 
evaluate the stability of the models using different impu-
tation methods. By using all available data for training 
and testing, k-fold cross-validation reduces the variance 
of the performance estimate compared to a simple train-
test split. It also helps to avoid overfitting, as the model 
is evaluated on multiple independent test sets. Addition-
ally, k-fold cross-validation can help to identify potential 
issues with the data, such as data leakage or class imbal-
ance, that may not be apparent with a single train-test 
split. The dataset is split into k subsets or folds of equal 
size. The model was trained and evaluated k times, in 
each iteration, k-1 folds were used to train the model and 
the rest of the folds were used for testing. It can provide 
more reliable estimate of the model’s performance by 
mitigating the issues of overfitting and variability in the 
training and testing process.

Classification model building and validation
The data imputation method that gave the best results 
after preliminary modelling was used to build models 
with the post-imputation dataset and each of the five 
algorithms mentioned above. The accuracy, precision, 
recall, F1 scores and confusion matrixes of all models 
were compared. The performances of ML models were 
evaluated through 10-fold cross validation.

In order to test the predictive performance of the 
model and to provide guiding concepts for the design 
of nanostructured surfaces, four new datasets were cre-
ated for prediction: Ti-based nanostructured surfaces 
against Gram-negative bacteria, Ti-based nanostructured 
surfaces against Gram-positive bacteria, Si-based nano-
structured surfaces against Gram-positive bacteria and 
Si-based nanostructured surfaces against Gram-negative 
bacteria. Each dataset contained 829,448 data points, 
from which the bactericidal efficiencies were plotted. The 
enumeration parameters are detailed in Table 4.

Analysis of feature importance
For all ML models, the feature importance is calculated 
be using Permutation Importance algorithm, which 
works by first training the model on the original dataset 
and calculating the performance metric on a validation 
set. Then, for each feature, the values of that feature in 
the validation set are randomly permuted (shuffled) while 
leaving the values of all other features unchanged. The 
model is then evaluated on the permuted data, and the 
difference between the original performance and the per-
muted performance is calculated. This difference repre-
sents the importance of the feature.

For GBM and XGBoost model, the feature impor-
tance is also calculated based on the reduction in the 
loss function that is achieved by a feature when it is used 
in a decision tree for comparison. For each feature, the 
importance score is calculated by summing the gain in 
accuracy or reduction in the objective function that was 
achieved when using that feature for splitting data over 
all the decision trees in the model. The feature impor-
tance scores are normalized so that they sum to 1.

Despite identifying the important features that con-
tributed to bactericidal efficiency prediction, the extent 
of the contributions is unknown. This is a typical char-
acteristic of models generated with most ML methods, 
as interpreting the predictive model’s output is tedious, 
especially by increasing the complexities in non-linear 
models. Thus, we used SHAP values to explain how fea-
tures affect the output of ML models. This framework 
has a solid theoretical foundation in game theory and can 
provide contrastive explanations and analyse the model’s 
output locally and globally [56].
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Regression model building
In this study, after successfully constructing a classifica-
tion model, a regression model was built to extend the 
analysis by using four different algorithms to further 
analyse the bactericidal efficiency of successful bacteri-
cidal surfaces: KNN, GBM, XGBoost and Ridge Regres-
sion (RR).

RR has been added, a linear regression regularisation 
technique that adds a penalty term to the loss function 
to help prevent overfitting by reducing the coefficients to 
zero. It is particularly useful in cases where there is multi-
collinearity, providing a balance between the complexity 
of the model and generalisation performance.

To evaluate the models’ performances, Root Mean 
Squared Error (RMSE), mean absolute error (MAE), and 
coefficient of determination (R2) were set as the metrics. 
They were calculated by:

	
RMSE =

√∑
N
i=1(yi − ŷi)

2

N

	
MAE =

1
N

∑
N
i=1 |yi − ŷi|

	

R2 =

√√√√√
∑

N
i=1(

−
yi −ŷi)

2

∑
N
i=1(

−
yi −yi)

2

where yi  is the i’th expected value in the dataset, ŷi is the 
i’th predicted value, and −

yi  is the mean of expected value.
The effectiveness of a predictive model is often gauged 

by its RMSE and MAE values, which are relative to the 
specific dataset used. Generally, smaller values indicate 
a more accurate model. R2 is a statistical measure of fit 
that suggests how much variation of the output is sup-
ported by the inputs. R2 explains to what degree the vari-
ance of one variable describes the variance of the second 
variable.
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