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Abstract 

Tumor immune escape presents a significant challenge in cancer treatment, characterized by the upregulation 
of immune inhibitory molecules and dysfunction of immune cells. Tumor immunotherapy seeks to restore normal 
anti-tumor immune responses to control and eliminate tumors effectively. The active ingredients of traditional 
Chinese medicine (TCM) demonstrate a variety of anti-tumor activities and mechanisms, including the modulation 
of immune cell functions and inhibiting tumor-related suppressive factors, thereby potentially enhancing anti-tumor 
immune responses. Furthermore, nano-delivery systems function as efficient carriers to enhance the bioavailability 
and targeted delivery of TCM active ingredients, augmenting therapeutic efficacy. This review comprehensively ana-
lyzes the impact of TCM active ingredients on the immune system and explores the synergistic application of nano-
delivery systems in combination with TCM active ingredients for enhancing tumor immunotherapy.

Keywords Tumor immunotherapy, TCM, Active ingredients, Drug delivery, Nanocarriers

*Correspondence:
Lili Gao
Gaolilidexingfu@163.com
Tian Xie
tianxie@hznu.edu.cn
Na Kong
kongna@zju.edu.cn

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12951-025-03378-y&domain=pdf


Page 2 of 30Zheng et al. Journal of Nanobiotechnology          (2025) 23:357 

Graphical abstract

Introduction
Tumor cells evade immune recognition and attack 
through various mechanisms, enabling their survival and 
proliferation within the body. Tumor immunotherapy 
employs immunological principles to activate immune 
cells and bolster the body’s anti-tumor response, inhib-
iting tumor growth and overcoming immune tolerance. 
Notably, tumor immunotherapy is characterized by min-
imal side effects and significant treatment efficacy, posi-
tioning it as a promising frontier in cancer treatment. It 
is increasingly recognized as the fourth major modality 

in oncology, alongside surgery, radiotherapy, and chem-
otherapy [1].

TCM has been developed over thousands of years, 
encompassing a comprehensive theoretical framework, 
distinctive diagnostic methods, and an extensive treat-
ment system. In recent decades, TCM has gained rec-
ognition as a promising approach for cancer prevention 
and treatment [2]. There are numerous active ingredients 
in TCM with complex mechanisms that exert various 
effects on tumor occurrence, development, metastasis, 
and immune regulation. The immunomodulatory effects 
of TCM active ingredients mainly include enhancing the 



Page 3 of 30Zheng et al. Journal of Nanobiotechnology          (2025) 23:357  

functions of the immune system, as well as alleviating the 
immunosuppressive state caused by cancer and its treat-
ment. These mechanisms highlight TCM’s potential in 
tumor immunotherapy [3].

The clinical application of TCM active ingredients is 
hindered by their undesirable drug characteristics, such 
as low water solubility, poor stability, low bioavailabil-
ity, short retention time, and insufficient permeability 
and targeting ability, leading to unmet expectations 
[4]. The emergence of nanotechnology, specifically the 
integration of nanomaterials with drugs, has attracted 
significant attention in cancer treatment. Nano-drug 
delivery systems offer potential solutions to overcome 
these limitations and expedite the modernization of 
TCM. By engineering nano-delivery systems for TCM 
active ingredients, it becomes feasible to enhance 

drug solubility, stability, half-life, permeability, target-
ing ability, bioavailability, and pharmacological activity 
while minimizing side effects [5]. Thus, this combina-
tion can play a more potent immunomodulatory and 
anti-tumor role in immunotherapy.

In this review, we explore how TCM active 
ingredients modulate the immune response to 
enhance anti-tumor effects, providing insights for 
the development of novel immunotherapeutic drugs. 
Furthermore, the article examines current research 
advancements for integrating TCM active ingredients 
with nano-delivery systems in tumor immunotherapy, 
which provides a theoretical basis for clinical practice 
(Fig. 1).

Fig. 1 Schematic illustration of the modulation of the immune system and the various nanocarriers used in nano-delivery systems for active 
ingredients in TCM
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Fig. 2 Schematic diagram of the regulatory mechanisms of immune cells

Effects of active ingredients of TCM on the immune 
system
Immune cells, such as lymphocytes, macrophages, 
natural killer cells (NKs) and dendritic cells (DCs), 
play an essential role in the immune system (Fig.  2). 
However, the dynamic and complex interactions between 
tumors and the immune system often allow them to 
avoid immune surveillance, resulting in immune escape 
and ultimately increased malignancy and metastasis 
[6, 7]. TCM encompasses the characteristics of multi-
components, multi-targets, and multi-pathways, which 
not only directly kill tumor cells but also effectively 
regulate a variety of immune cells and improve anti-
tumor immunity (Table 1) [8–115].

Regulation of macrophages
Tumor cells evade macrophage clearance through the 
expression of anti-phagocytic signaling proteins. CD47 
on tumor cells interacts with the inhibitory receptor sig-
nal regulatory protein α (SIRPα) on macrophages, inhib-
iting immune response [116–118]. It is overexpressed in 
numerous cancers, including human lung cancer, breast 
cancer, and epithelial ovarian cancer. Gambogic acid 
(GA) is a resin secreted by the Garcinia hanburyi tree 
that can improve anti-tumor immunity. Ren et  al. dis-
covered that GA could markedly diminish the increased 
CD47 expression induced by chemotherapy [45]. Many 
tumors, such as triple-negative breast cancer (TNBC) 
and bladder cancer, also express high levels of CD24, 
which binds to sialic acid-binding Ig-like lectin 10 

(Siglec-10) on tumor-associated macrophages (TAMs), 
aiding in immune evasion by the tumor cells [119].

Macrophages undergoing M2 polarization can 
promote tumor cell growth, which facilitates the 
expression of arginase-1 (Arg-1) and vascular endothelial 
growth factor (VEGF), supporting extracellular matrix 
formation and cell proliferation [120–122]. Additionally, 
M2-like macrophages release lots of anti-inflammatory 
cytokines like TGF-β, IL-4, IL-10, and chemokines such 
as C-C motif chemokine ligand (CCL)1, CCL17, CCL18, 
ultimately causing immune suppression [123–125]. 
Celastrol, a pentacyclic triterpenoid compound derived 
from Tripterygium wilfordii Hook F., exhibits a range 
of pharmacological activities. Yang et  al. observed a 
dose-dependent inhibition of CD206 expression in both 
RAW264.7 cells and TAMs following treatment with 
celastrol [26]. Celastrol inhibits cancer metastasis by 
blocking M2 polarization through the signal transducer 
and activator of transcription (STAT)6 signaling 
pathway. Dihydroartemisinin (DHA) is an active 
metabolite of artemisinin and its derivatives, which has 
better water solubility and more robust antimalarial 
activity than artemisinin. Chen et  al. demonstrated that 
DHA inhibits the migration and invasion of head and 
neck squamous cell carcinoma by impeding STAT3 
phosphorylation and preventing M2 polarization in the 
tumor microenvironment (TME) [33]. Epigallocatechin-
3-gallate (EGCG) is the predominant catechin in green 
tea, and it has anti-bacterial, anti-virus, and anti-tumor 
effects. Jang et  al. reported that EGCG increases the 
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Table 1 Active ingredients of TCM and their mechanisms in tumor immunotherapy

Active ingredients TCM Effects Cancer/tumor types Refs.

Achyranthes bidentata polysaccharides Achyranthes bidentata Bl ↑DCs Colorectal cancer [8]

Angelica sinensis polysaccharide Angelica sinensis (Oliv.) Diels ↑NKs
↑CTLs
↑Th1/Th2 ratio

Melanoma [9, 10]

Apigenin Apium graveolens L ↑CTLs
↑Th1/Th2 ratio
↑M1 macrophages
↓PD-L1
↓Tregs

Breast cancer
Melanoma
Lung cancer
Pancreatic cancer

[11]

Artesunate Artemisia annua Linn ↓TGF-β, IL-10
↓Tregs

Colorectal cancer
Cervical cancer

[12, 13]

Asiatic acid Centella asiatica (L.) Urb ↑NKs
↑CTLs
↓Tregs
↓PD-L1

Breast cancer
Melanoma
Lung cancer

[14, 15]

Astragaloside III Astragalus membranaceus (Fisch.) 
Bunge

↑NKs Colorectal cancer [16]

Astragaloside IV Astragalus membranaceus (Fisch.) 
Bunge

↓M2 macrophages
↓TGF-β, IL-10

Colorectal cancer
Lung cancer
Ovarian cancer

[17]

Astragalus polysaccharide Astragalus membranaceus (Fisch.) 
Bunge

↑M1 macrophages
↑NKs
↑DCs
↑CTLs
↓Tregs
↓PD-L1
↓MDSCs

Lung cancer
Breast cancer
Ehrlich ascites carcinoma
Gastric cancer
Colorectal cancer
Cervical cancer

[18]

Baicalin Scutellaria baicalensis Georgi ↓M2 macrophages
↓PD-L1

Liver cancer [19, 20]

Berberine Coptis chinensis Franch ↑CTLs
↓PD-L1
↓MDSCs
↓Tregs

Lung cancer [21]

Betulinic acid Betula platyphylla Suk ↓MDSCs
↓M2 macrophages

Breast cancer
Liver cancer

[22, 23]

Bufalin Bufo bufo gargarizans Cantor ↑NKs
↑M1 macrophages

Liver cancer [24, 25]

Celastrol Tripterygium wilfordii Hook. f ↓M2 macrophages Breast cancer [26]

Cryptotanshinone Salvia miltiorrhiza Bunge ↑DCs
↑M1 macrophages

Lung cancer [27, 28]

Curcumin Curcuma longa L ↑CTLs
↑Th1/Th2 ratio
↓Tregs
↓TGF-β, IL-10
↓CTLA4

Lung cancer
Colorectal cancer
Leukemia
Tongue squamous cell carcinoma

[29, 30]

Dihydroartemisinin Artemisia annua Linn ↑CTLs
↑Th1/Th2 ratio
↓Tregs
↓PD-L1
↓M2 macrophages

Breast cancer
Pancreatic cancer
Melanoma
Lung cancer
Head and neck squamous cell 
carcinoma

[31–33]

Dioscin Dioscorea polystachya Turczaninow ↑M1 macrophages Melanoma
Lung cancer

[34, 35]

Echinacea polysaccharides Echinacea purpurea (L.) Moench ↑M1 macrophages Liver cancer
Colorectal cancer

[36]

Epigallocatechin-3-gallate Camellia sinensis (L.) O. Kuntze ↓M2 macrophages
↓PD-L1

Breast cancer
Melanoma

[37, 38]

Epimedium polysaccharides Epimedium koreanum Nakai ↑M1 macrophages
↑DCs
↑CTLs

Lung cancer [39, 40]



Page 6 of 30Zheng et al. Journal of Nanobiotechnology          (2025) 23:357 

Table 1 (continued)

Active ingredients TCM Effects Cancer/tumor types Refs.

Fucoidan Laminaria japonica Aresch ↑DCs
↓M2 macrophages
↓PD-L1

Melanoma
Tongue squamous cell carcinoma
Liver cancer
Fibrosarcoma

[41–43]

Gambogic acid Garcinia hanburyi Hook.f ↑CTLs
↓PD-1
↓Tregs
↓MDSCs
↓M2 macrophages

Oral squamous cell carcinoma
Nasopharyngeal carcinoma
Colorectal cancer

[44–46]

Ganoderma formosanum polysac-
charides

Ganoderma formosanum ↑CTLs
↑Th1/Th2 ratio
↑NKs

Sarcoma
Melanoma
Colorectal cancer
Lung cancer

[47, 48]

Ganoderma lucidum polysaccharides Ganoderma lucidum ↑M1 macrophages
↑Th1/Th2 ratio
↑CTLs
↓Tregs
↓MDSCs

Liver cancer
Breast cancer
Lung cancer

[49–51]

Ganoderma sinense polysaccharides Ganoderma sinense ↑CTLs
↑DCs

Liver cancer
Lung cancer
Esophageal cancer
Colorectal cancer
Leukemia

[52, 53]

Genistein Glycine max (L.) Merr ↑CTLs
↓Tregs

Breast cancer [54]

Ginseng polysaccharides Panax ginseng C. A. Meyer ↑CTLs
↑NKs
↑Th1/Th2 ratio
↓Tregs

Melanoma
Nasopharyngeal carcinoma
Lung cancer
Colorectal cancer
Liver cancer
Gastric cancer

[55]

Ginsenoside F1 Panax ginseng C. A. Meyer ↑NKs Lymphoma
Melanoma

[56]

Ginsenoside Rg3 Panax ginseng C. A. Meyer ↑CTLs
↑Th1/Th2 ratio
↓PD-L1

Liver cancer
Lung cancer

[57, 58]

Ginsenoside Rh2 Panax ginseng C. A. Meyer ↑CTLs
↑M1 macrophages
↑NKs
↓PD-L1
↓Tregs

Lung cancer
Breast cancer
Melanoma
Leukemia
Ovarian cancer
Liver cancer
Colorectal cancer

[59–62]

Glycyrrhetinic acid Glycyrrhiza uralensis Fisch ↑CTLs Lung cancer [63]

Glycyrrhiza polysaccharide Glycyrrhiza uralensis Fisch ↑CTLs
↑Th1/Th2 ratio
↓Tregs
↓TGF-β, IL-10

Liver cancer
Colorectal cancer

[64, 65]

Glycyrrhizic acid Glycyrrhiza uralensis Fisch ↑Th1/Th2 ratio
↓Tregs
↓MDSCs
↓CTLA4

Melanoma [66, 67]

Icariin Epimedium brevicornum Maxim ↑CTLs
↓M2 macrophages
↓PD-L1
↓MDSCs
↓TGF-β, IL-10

Breast cancer
Pancreatic cancer
Cervical cancer
Mastocytoma
Melanoma

[68]
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Table 1 (continued)

Active ingredients TCM Effects Cancer/tumor types Refs.

Icaritin Epimedium brevicornum Maxim ↑CTLs
↓PD-L1
↓MDSCs

Breast cancer
Liver cancer
Lung cancer
Melanoma
Prostate cancer
Colorectal cancer

[69]

Lentinan Lentinus edodes ↑CTLs
↑Th1/Th2 ratio
↑NKs
↓MDSCs
↓Tregs
↓TGF-β, IL-10

Lung cancer
Bladder cancer

[70, 71]

Lupeol Lupinus polyphyllus Lindl ↑NKs
↓M2 macrophages

Gastric cancer
Lung cancer

[72]

Luteolin Reseda odorata L ↑CTLs
↑Th1/Th2 ratio
↓Tregs
↓PD-L1

Melanoma
Lung cancer

[73, 74]

Lycium barbarum polysaccharides Lycium barbarum L ↑CTLs
↑DCs

Sarcoma
Colorectal cancer

[75, 76]

Matrine Sophora flavescens Aiton ↑CTLs
↑DCs
↓M2 macrophages

Lung cancer [77, 78]

Norcantharidin Mylabris phalerata Pallas ↑CTLs
↑M1 macrophages
↓Tregs
↓CTLA4
↓TGF-β, IL-10

Liver cancer
Prostate cancer

[79, 80]

Notoginsenoside Ft1 Panax notoginseng (Burk.) F. H. Chen ↑CTLs Colorectal cancer [81]

Oridonin Rabdosia rubescens (Hemsl.) Hara ↑CTLs
↓Tregs
↓PD-L1
↓TGF-β, IL-10

Breast cancer
Bladder Cancer

[82, 83]

Plumbagin Plumbago zeylanica L ↑CTLs Lung cancer [84]

Poria cocos polysaccharide Poria cocos (Schw.) Wolf ↑CTLs
↑NKs

Ehrlich ascites carcinoma [85]

Puerarin Pueraria lobata (Willd.) Ohwi ↑Th1/Th2 ratio
↓M2 macrophages
↓TGF-β, IL-10

Lung cancer [86]

Red ginseng acidic polysaccharides Panax ginseng C. A. Meyer ↑M1 macrophages Melanoma [87]

Rehmannia glutinosa polysaccharide Rehmannia glutinosa (Gaert.) Libosch. 
ex Fisch. et C. A. Mey

↑NKs Colorectal cancer [88]

Resveratrol Veratrum album L ↑CTLs
↑DCs
↑NKs
↓M2 macrophages
↓Tregs
↓MDSCs
↓PD-L1
↓TGF-β, IL-10

Lung cancer
Osteosarcoma
Thymoma
Oral squamous cell carcinoma
Breast cancer
Liver cancer
Melanoma
Renal cell carcinoma
Leukemia

[89, 90]

Saikosaponin A Bupleurum chinense DC ↑CTLs
↑Th1/Th2 ratio

Breast cancer [91]

Saikosaponin D Bupleurum chinense DC ↑CTLs
↑NKs
↓M2 macrophages
↓MDSCs

Pancreatic cancer [92]
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expression of microRNA (miR)-16 in tumor cells, which 
is then transferred to TAMs via exosomes [37]. This 
transfer leads to reduced TAM infiltration and M2 
polarization.

In contrast, M1-like macrophages secrete large 
amounts of co-stimulatory molecules and highly 
express major histocompatibility complex (MHC) class 
II molecules. They release matrix metalloproteinases 
(MMPs), inducible nitric oxide synthase (iNOS), and 
reactive oxygen species (ROS) [126]. M1 macrophages 
are characterized by their strong antigen presentation 
and the secretion of pro-inflammatory cytokines like 
TNF-α, IL-1β, IL-6, and chemokines such as CCL2, 
CCL3, CCL5, which stimulate a strong anti-tumor 
immune response [127, 128]. In the early stages of tumor 
development, TAMs predominantly exhibit an M1 
phenotype; however, as the tumor progresses, they shift 
to the M2 phenotype and then become dominant among 
TAMs [129]. Astragaloside IV (ASIV) has been shown 
to exert cytotoxic effects on tumor cells by altering the 
polarization of TAMs in the TME [17]. ASIV partially 

blocks M2 macrophage polarization and reduces M2 
macrophage proangiogenic activity via the AMP-
activated protein kinase (AMPK) signaling pathway. 
Additionally, ASIV promotes the polarization of M2 
macrophages to M1 macrophages by decreasing IL-4 and 
TGF-β expression and inhibiting the AMPK pathway. 
Dioscin is a steroidal saponin extracted from the roots 
of Dioscorea plants. Kou et al. demonstrated that dioscin 
can inhibit tumor progression by polarizing RAW264.7 
cells towards the M1 type through the connexin-43 
(Cx43) channel [34]. Additionally, Cui et al. reported that 
dioscin inhibits M2 macrophages and promotes their 
transformation to M1 type by downregulating the STAT3 
and Jun N-terminal kinase (JNK) pathways in lung cancer 
[35].

Regulation of NKs
Research has consistently highlighted the crucial role of 
NKs in regulating tumor metastasis and proliferation by 
releasing IFN-γ and TNF-α, which alter the TME and 
impede tumor growth [130–132]. Conversely, Freeman 

Table 1 (continued)

Active ingredients TCM Effects Cancer/tumor types Refs.

Salidroside Rhodiola rosea L ↑CTLs
↑DCs
↓Tregs
↓TGF-β, IL-10

Lung cancer [93, 94]

Salvia miltiorrhiza polysaccharides Salvia miltiorrhiza Bunge ↑CTLs
↑NKs

Gastric cancer [95]

Salvianolic acid A Salvia miltiorrhiza Bunge ↓M2 macrophages Breast cancer [96]

Salvianolic acid B Salvia miltiorrhiza Bunge ↑CTLs
↓PD-1

Breast cancer [97]

Sativan Spatholobus suberectus Dunn ↓PD-L1 Breast cancer [98]

Shikonin Lithospermum erythrorhizon Sieb. et 
Zucc

↑DCs
↑NKs

Ovarian cancer
Breast cancer
Colorectal cancer

[99–101]

Solamargine Solanum nigrum L ↑DCs
↓M2 macrophages
↓MDSCs
↓PD-L1

Liver cancer
Lung cancer

[102, 103]

Soyasapogenols Glycine max (L.) Merr ↓M2 macrophages Glioblastoma
Osteosarcoma

[104]

Tanshinone IIA Salvia miltiorrhiza Bunge ↑CTLs
↑DCs
↑M1 macrophages
↓Tregs

Lung cancer
Liver cancer
Colorectal cancer

[105–107]

Tetramethylpyrazine Ligusticum chuanxiong Hort ↑Th1/Th2 ratio
↑NKs

Lung cancer
Renal cell carcinoma

[108, 109]

Triptolide Tripterygium wilfordii Hook. f ↑NKs
↓Tregs
↓TGF-β, IL-10
↓PD-L1

Melanoma
Breast cancer
Oral squamous cell carcinoma
Ovarian cancer
Leukemia

[110–112]

β-elemene Curcuma wenyujin Y. H. Chen et C. 
Ling

↑DCs
↓M2 macrophages

Lung cancer
Pancreatic cancer

[113–115]
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et al. identified that genes involved in antigen presenta-
tion and IFN-γ signaling could protect tumor cells from 
NK cell-mediated killing [133]. Tumors lacking these 
genes are more sensitive to NKs but resistant to  CD8+ T 
cells [134]. Additionally, NKs express NK receptor group 
2 member D (NKG2D), which recognizes MHC class I 
molecules and participates in the killing of tumor cells 
[135]. NKs produce CCL5 and X-C motif chemokine 
ligand (XCL)1, recruiting type 1 conventional DCs to 
the TME. Böttcher et al. revealed that prostaglandin E2 
(PGE2) from tumor cells diminishes NK cell activity and 
chemokine production, which also impairs DC respon-
siveness [136]. Angelica sinensis polysaccharides (ASP) 
are among the primary active components of Angelica 
sinensis. ASP treatment resulted in increased levels of 
IL-2, IL-6, IL-12, and IFN-γ in macrophages, T helper 
(Th) cells, and NKs. IL-12 is crucial for the activation 
of NK and natural killer T (NKT) cells [9]. Kim et  al. 
demonstrated that ASP enhanced the anti-cancer activ-
ity of NK and NKT cells in  vivo, leading to increased 
cytotoxicity against murine B16 melanoma cells [10]. 
Chen et  al. reported that astragaloside III significantly 
augmented the production of NKG2D, Fas, and IFN-
γ in NKs, thereby enhancing their capacity to eliminate 
tumors [16]. Bufalin, a major active ingredient from the 
dry skin gland secretion of bufo gargarizans, has been 
shown to possess significant anti-liver cancer effects. 
Besides directly inhibiting the proliferation of liver can-
cer cells and inducing apoptosis, bufalin also modulates 
the immune response to exert cytotoxic effects. Fu et al. 
found that bufalin enhances the killing efficacy of NKs by 
regulating MHC class I chain-related protein A (MICA) 
and a disintegrin and metalloproteinase 9 (ADAM9) [24]. 
Bufalin potentially downregulates ADAM9 expression, 
thereby impeding MICA shedding and promoting NK-
mediated cytotoxicity against tumor cells.

Regulation of DCs
DCs are specialized in antigen presentation and play a 
crucial role in  CD8+ T cell activation. In addition to the 
mentioned PGE2, tumor cells inhibit DC function via 
multiple pathways, including β-catenin upregulation, 
which affects cell adhesion, gene expression, and 
immune evasion. For instance, β-catenin downregulates 
chemokines like CCL5, CCL17, CCL20, CCL28, CXC 
chemokine ligand (CXCL)1, and CXCL10 in liver cancer, 
leading to impaired DC recruitment and immune escape 
[137]. In melanoma, activated β-catenin upregulates 
activating transcription factor 3 (ATF3) while reducing 
CCL4, thereby preventing migration of DCs into the 
TME [138]. Additionally, Wnt proteins, such as Wnt1 in 
lung cancer, indirectly inhibit  CD8+ T cells by affecting 
tumor-infiltrating DCs [139]. Cryptotanshinone, a 

component of Salvia miltiorrihiza Bunge, exhibits 
a range of therapeutic and biological activities. Liu 
et  al. reported that cryptotanshinone displayed anti-
tumor activity by inhibiting cell proliferation and 
enhancing immune response in a mouse model of 
Lewis lung cancer [27]. Cryptotanshinone enhanced 
the maturation of DCs, leading to increased expression 
of MHC and co-stimulatory molecules, which in turn 
induced the production of TNF-α and IL-1β from 
DCs. Cryptotanshinone promoted DC maturation by 
activating the myeloid differentiation primary response 
protein 88 (MyD88) and nuclear factor kappa B (NF-
κB) signaling pathway, resulting in the inhibition of 
IL-10 secretion. Marine algae are one of the most 
abundant natural resources in the ocean. Fucoidan, 
a polysaccharide derived from marine algae, exhibits 
a range of immune-modulating and anti-tumor 
properties. Studies have demonstrated that intravenous 
or intraperitoneal administration of fucoidan induces 
the activation of DCs, NKs, and T cells in mice. For 
example, fucoidan serves as an adjuvant in B16-OVA 
murine models, effectively augmenting DC maturation 
and function while stimulating antigen-specific T cell 
immune responses [41]. Matrine, an alkaloid found 
in Sophora flavescens Aiton, is widely used to treat 
various inflammatory diseases and cancers. Clinical 
studies have demonstrated that matrine dramatically 
improves the immune function of patients and exerts 
anti-tumor effects. Wang et al. revealed the mechanisms 
underlying matrine’s anti-tumor effects on DCs [78]. 
Matrine increases the mRNA and protein expression of 
toll-like receptors (TLRs), especially TLR7 and TLR8, 
and promotes the expression of a series of downstream 
signaling molecules, ultimately activating IL-6, IL-12, 
and TNF-α secretion. These cytokines facilitate DC 
maturation and further enhance antigen presentation.

Regulation of T cells
Immune checkpoints such as cytotoxic T lymphocyte 
(CTL)-associated antigen 4 (CTLA4) and programmed 
death protein 1 (PD-1) are popular in the study of immu-
notherapy [140]. CTLA4, expressed on CTLs and regu-
latory T cells (Tregs), acts as an immunosuppressive 
receptor with a higher affinity for B7 molecules on anti-
gen-presenting cells (APCs) than CD28 [141]. It func-
tions as a competitive antagonist of CD28-B7 interaction, 
blocking T cell-APC co-stimulation and inhibiting T cell 
activation [142]. CTLA4 signaling reduces IL-2 secretion, 
inhibits IL-2 receptor expression, and regulates the cell 
cycle, thereby restricting T cell proliferation and cytokine 
secretion [143]. It has also been reported that CTLA4 is 
expressed on some tumor cells (such as melanoma cells), 
which contributes to immune escape [144].
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PD-1 expression increases on activated T cells, while 
PD-1 ligand (PD-L1) is similarly upregulated on tumor 
cells [145]. These two molecules combine and generate 
inhibitory signals that suppress the proliferation of  CD8+ 
T cells and the release of pro-inflammatory cytokines 
[146]. IL-21 from  CD4+ T cells promotes CTL generation, 
but exhausted  CD4+ T cells can lead to dysfunction 
in  CD8+ T cells, which PD-1/PD-L1 blockade cannot 
fully reverse. Additionally, PD-1 expression is elevated 
in B cells, macrophages, DCs, and monocytes, with 
mutations in tumor cells further enhancing PD-L1 
expression through various mechanisms, which promote 
cancer metastasis and immunosuppression [147, 
148]. Berberine, a compound extracted from Coptis 
chinensis, is renowned for its medicinal properties in 
addressing cancers, bacterial infections, diabetes, and 
cardiovascular issues. Liu et al. discovered that berberine 
effectively counteracts immunosuppression in lung 
cancer [21]. Mechanistically, berberine specifically binds 
to constitutive photomorphogenic 9 signalosome 5 
(CSN5) and uses its deubiquitination activity to inhibit 
the PD-1/PD-L1 axis. This leads to the ubiquitylation 
and degradation of PD-L1, thereby increasing CTL 
activity and cytotoxicity against cancer cells. In addition, 
DHA reduces PD-L1 expression and counteracts 
immune evasion in lung cancer by modulating the 
phosphoinositide 3-kinase (PI3K)/protein kinase B 
(AKT), TGF-β, and STAT3 signaling pathways. This 
intervention effectively overcomes resistance to radiation 
therapy and improves its efficacy by enhancing radiation 
sensitivity [32]. Furthermore, Ravindran Menon et  al. 
showed that EGCG treatment suppressed the PD-L1 
and PD-L2 expression induced by IFN-γ and inhibited 
Janus kinase (JAK)-STAT signaling, thereby enhancing 
CTL responses [38]. 18β-glycyrrhetinic acid (GLA), 
the principal metabolite of glycyrrhizic acid (GL) 
extracted from licorice root, is noted for its antiviral, 
anticancer, and immunomodulatory properties. Ma 
et  al. demonstrated that GLA suppresses lung cancer 
by enhancing  CD8+ T cell activation [63]. Additionally, 
GLA prevents arachidonic acid-mediated apoptosis of 
 CD8+ T cells by inhibiting CD36 expression, thereby 
strengthening the immune response.

Regulation of other immune cells
Tregs, a subgroup of  CD4+ T cells, are essential for 
maintaining immune homeostasis and can inhibit T 
lymphocyte functions after activation. Macrophages 
in the TME secrete chemokines to recruit Tregs from 
peripheral blood to the tumor site, leveraging their 
immunosuppressive functions to evade immune 
detection [149]. Artesunate is a water-soluble derivative 
of artemisinin, which has been found to possess a variety 

of anti-tumor mechanisms, including the reversal of 
tumor immunosuppression. Zhang et al. discovered that 
artesunate can significantly inhibit the production of 
PGE2 by suppressing the expression of cyclooxygenase-2 
(COX-2) in cervical cancer cells [13]. This leads to a 
reduction in the expression of forkhead box protein P3 
(FOXP3) in T cells and a decrease in the percentage of 
 CD4+CD25+ Tregs in peripheral blood. Ganoderma 
lucidum polysaccharides (GLPS) are among the most 
important bioactive compounds in Ganoderma lucidum. 
Li et  al. demonstrated that GLPS treatment inhibits the 
Notch1 signaling pathway and FOXP3 expression by 
upregulating miR-125b [50]. This results in a reduction in 
the accumulation and activity of Tregs, thereby inhibiting 
liver cancer growth.

Th1 and Th2 cells are other  CD4+ T cell subsets. Th1 
cells primarily secrete cytokines like IFN-γ, TNF-α, and 
IL-2, which facilitate the CTL-mediated anti-tumor 
responses. Conversely, Th2 cells produce cytokines such 
as IL-4, IL-6, and IL-13 to support B cells in generating 
antigen-specific antibodies and participating in humoral 
immunity [150]. Normally, there exists a delicate bal-
ance between Th1 and Th2 cells due to their cytokine 
secretion, but cancers often skew this balance towards 
Th2, which contributes to tumor immune evasion [151]. 
Curcumin is the principal active component of a yel-
low pigment extracted from the root of Curcuma longa. 
It is recognized as a potent anti-cancer medicine and a 
potential immune adjuvant. In general, curcumin exerts 
its anti-tumor immune functions by enhancing  CD4+ 
and  CD8+ T cell populations within the TME and redi-
recting the Th2 cells towards Th1 cells. This results in an 
increased Th1-mediated immune response and enhanced 
secretion of IFN-γ [29]. Saikosaponin A (SSA), a triter-
penoid glycoside derived from Radix Bupleuri, is known 
for its anti-inflammatory, immunomodulatory, and anti-
tumor effects. Zhao et al. conducted a study demonstrat-
ing SSA’s inhibitory effect on breast cancer [91]. Their 
results indicated that SSA significantly enhanced the 
anti-tumor immune response, as evidenced by increased 
infiltration of  CD4+ and  CD8+ T cells in the TME and a 
shift in the Th1/Th2 balance towards a Th1 response. SSA 
was shown to upregulate the expression of IL-12, IL-12 
receptor, and STAT4, thereby facilitating Th1 differentia-
tion. This was corroborated by elevated serum levels of 
IFN-γ and IL-12 and lowered levels of IL-4 and IL-10.

Myeloid-derived suppressor cells (MDSCs) are a 
heterogeneous group of cells originating from the bone 
marrow, serving as precursors to DCs, macrophages, 
and granulocytes. MDSCs suppress immune responses 
through various mechanisms and pathways, including 
inhibiting T cell activation, inducing T cell anergy, 
suppressing NK cell cytotoxicity, and promoting 
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tumor-supportive macrophages. They secrete Arg-1, 
iNOS, and ROS to hinder T cell activity and enhance 
Tregs’ immunosuppressive effects [152]. Studies 
by Bu et  al. demonstrated that GLPS could assist 
gemcitabine against tumors [51]. They observed that 
GLPS significantly reduced the chemotherapy-induced 
increase of MDSCs in breast and lung cancers, decreased 
the proportion of M2 macrophages while increasing 
M1 macrophages, promoted the proliferation and 
differentiation of Th1 cells and CTLs, and reversed 
gemcitabine-induced T cell depletion. GL is a glycoside 
composed of two molecules of glucuronic acid that 
decompose into GLA in the body. Juin et al. reported that 
GL inhibited melanoma growth by inducing apoptosis. 
Meanwhile, GL inhibited phospho-STAT3-mediated 
immune suppression by Tregs and MDSCs in melanoma. 
Notably, FOXP3, glucocorticoid-induced TNF receptor 
(GITR), and CTLA4 were downregulated in Tregs, while 
COX-2, PGE2, and Arg-1 were inhibited in MDSCs [66, 
67].

Integration of nano‑delivery systems and TCM 
active ingredients in tumor immunotherapy
Nano-drug delivery systems are technologies that deliver 
drugs to the body through a variety of nanocarriers, such 
as lipids, polymers, inorganic materials, and biomimetic 
materials. The combination of nano-delivery systems 
with active ingredients in TCM offers several advantages, 
including enhanced drug stability, prolonged circulation 
time in the bloodstream, controlled and sustained drug 
release, and targeted accumulation at tumor sites. This 
integration not only bolsters the immune system’s 
response against tumor cells but also improves overall 
treatment outcomes (Table 2) [153–229].

Lipid‑based nano‑delivery systems with TCM active 
ingredients
Lipid-based nano-delivery systems are a widely used and 
effective platform for drug delivery. They utilize the bio-
compatibility and structural characteristics of lipids to 
encapsulate and transport drugs.

Liposomes
Liposomes, characterized by their phospholipid bilayer 
structure, offer unique advantages for TCM delivery due 
to their dual loading capacity—encapsulating hydrophilic 
compounds within the aqueous core and hydrophobic 
actives within the lipid bilayers [230]. Their excellent 
biocompatibility, derived from endogenous phospholipid 
components, minimizes immunogenicity risks while 
enabling penetration through biological barriers [231]. 
Notably, this biomimetic design has been leveraged 
to co-deliver synergistic TCM active ingredients and 

other drugs for enhanced anti-tumor effects. However, 
liposomes are rapidly cleared and physically unstable 
in  vivo, so they are often modified to overcome these 
limitations. Zhu et  al. replaced cholesterol with 
ginsenoside Rg3 as a liposomal membrane material, 
allowing the liposomes to target cancer cells and the TME 
through recognition of glucose transporter 1 (GLUT1) 
[191, 192]. Utilizing this functional liposome loaded 
with paclitaxel (Rg3-PTX-LPs) significantly promotes 
tumor cell apoptosis, reshapes immunosuppressive TME, 
and reverses multidrug resistance (MDR). The glucose 
chains present in ginsenoside Rg3 exhibit a specific 
affinity towards the GLUT1 located within the blood–
brain barrier (BBB), thereby facilitating the increased 
translocation of liposomes into the brain. This indicates 
that Rg3-PTX-LPs have the potential for treating glioma. 
Xu et  al. substituted cholesterol with GL and loaded 
triptolide into the lipid bilayer, resulting in TP/GLLNP 
[200]. GL not only enhances the stability and fluidity 
of liposomes but also binds to GL receptors on the 
surface of liver cancer cells. The co-loaded drugs of TP/
GLLNP exhibit enhanced cellular uptake, cytotoxicity, 
and immune activation. Additionally, Xin et al. designed 
thermosensitive liposomes with specific structure and 
function (Fig.  3A) [208]. Surface modification with 
CXCL10 greatly reduces the capture of liposomes by 
leukocytes. As a chemokine, CXCL10 can activate 
immune cells, thereby enhancing their response against 
tumors. Furthermore, the incorporation of hyaluronic 
acid (HA)-conjugated oridonin on the liposome surface, 
combined with hyperthermia, synergistically enhances 
the anti-tumor efficacy of CXCL10.

Solid lipid nanoparticles and nanostructured lipid carriers
Solid lipid nanoparticles (SLNs) consist of solid-state 
natural or synthetic lipids, such as phospholipids and 
triglycerides, that encapsulate drugs to form a solid gel 
drug delivery system. SLNs offer advantages, including 
controlled drug release, prevention of drug degradation 
or leakage, and improved targeting ability [232, 233]. 
However, SLNs tend to form structures with perfect crys-
tals, which restrict the loading and release of drugs. To 
overcome these limitations, researchers have developed 
nanostructured lipid carriers (NLCs) based on SLNs. 
NLCs are composed of a mixture of liquid and solid lipids 
with an irregular crystal structure. The addition of liq-
uid lipids significantly enhances drug encapsulation effi-
ciency and loading capacity while also providing better 
stability and controlled release characteristics [234, 235].
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Table 2 Applications of active ingredients from TCM using nano-delivery systems in tumor immunotherapy

Active ingredients Carrier Type Features Effects Cancer/tumor types Refs.

Angelica sinensis polysaccharide Carrier-free nanodrug Enzyme-sensitive ↑Th1/Th2 ratio Lung cancer
Breast cancer

[153]

Artesunate Biomimetic nanoparticle Redox-sensitive
Photothermal

↑DCs
↑CTLs

Breast cancer [154]

Artesunate Biomimetic nanoparticle ROS-sensitive
Tumor targeting

↓M2 macrophages Colorectal cancer [155]

Artesunate Nanoparticle pH-sensitive ↑DCs Breast cancer [156]

Astragaloside IV and tanshinone 
IIA

Metal–organic framework Improve solubility ↑CTLs Liver cancer [157]

Astragaloside III Mesoporous silica nanoparticle Photosensitive ↑NKs
↑CTLs

Colorectal cancer [158]

Astragaloside IV and oxymatrine Biomimetic nanoparticle Tumor targeting
Magnetic targeting

↑CTLs Liver cancer [159]

Astragaloside IV and ursolic acid Nanoparticle Tumor targeting ↑NKs
↑CTLs

Lung cancer [160]

Astragalus polysaccharide Carrier-free nanodrug Abscopal effect ↑DCs
↑CTLs

Breast cancer [161]

Astragalus polysaccharide Carrier-free nanodrug Improve solubility ↑CTLs Liver cancer [162]

Astragalus polysaccharide Nanoparticle Photoacoustic imaging ↑DCs
↑CTLs

Breast cancer [163]

Baicalin Nanoparticle TAMs targeting ↓M2 macrophages Melanoma [164]

Celastrol Nanoemulsion Abscopal effect ↑DCs
↑NKs
↑CTLs
↑Th1/Th2 ratio
↓PD-L1
↓MDSCs
↓Tregs

Melanoma [165]

Celastrol Nanoparticle Tumor targeting ↑DCs
↑CTLs
↓MDSCs
↓Tregs
↓M2 macrophages
↓TGF-β, IL-10

Melanoma [166]

Curcumin Liposome Tumor targeting ↑Th1/Th2 ratio Colorectal cancer [167]

Curcumin Nanofiber Improve solubility ↑CTLs
↓MDSCs

Lung cancer [168]

Curcumin Nanoparticle pH/ROS-sensitive
Tumor targeting

↑NKs
↓M2 macrophages
↓MDSCs
↓Tregs

Lung cancer [169]

Curcumin Nanoparticle colloidal dispersion Improve solubility ↑CTLs
↑DCs

Esophageal cancer [170]

Curcumin and camptothecin Liposome Across the BBB ↓PD-L1
↓Tregs

Glioma [171]

Curcumin and shikonin Carrier-free nanodrug Enhance therapeutic efficacy ↑DCs
↑CTLs
↓Tregs

Colorectal cancer [172]

Curcumin, glycyrrhetic acid, 
and Angelica sinensis polysac-
charide

Biomimetic nanoparticle Liver targeting
Redox-sensitive

↑CTLs Liver cancer [173]

Dihydroartemisinin Nanoscale coordination polymer Redox-sensitive ↑CTLs
↑DCs
↑M1 macrophages

Colorectal cancer [174]

Dihydroartemisinin Biomimetic nanoparticle Redox-sensitive
Sonodynamic
Photoacoustic imaging

↑CTLs
↑DCs
↓Tregs

Liver cancer [175]
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Table 2 (continued)

Active ingredients Carrier Type Features Effects Cancer/tumor types Refs.

Dihydroartemisinin Layered double hydroxide pH-sensitive ↑CTLs
↑DCs

Breast cancer [176]

Dihydroartemisinin Nanoscale coordination polymer Redox-sensitive ↑CTLs
↑DCs
↑NKs

Colorectal cancer [177]

Dihydroartemisinin Nanosheet Redox-sensitive ↑CTLs
↑DCs
↑M1 macrophages
↓Tregs

Liver cancer [178]

Epigallocatechin-3-gallate Gold nanoparticle Reduce side effects ↑NKs Bladder cancer [179]

Epigallocatechin-3-gallate Nanoparticle pH-sensitive ↑CTLs
↑DCs
↓PD-L1

Breast cancer [180]

Fucoidan Iron oxide nanoparticle Magnetic targeting ↑CTLs
↓Tregs
↓M2 macrophages
↓PD-L1

Breast cancer
Colorectal cancer

[181]

Fucoidan Nanomicelle Tumor targeting ↑DCs
↑CTLs
↓Tregs
↓MDSCs
↓TGF-β, IL-10

Breast cancer [182]

Fucoidan Nanoparticle Inhibit MDR ↑M1 macrophages Colorectal cancer [183]

Gambogic acid Biomimetic nanoparticle Tumor targeting ↑DCs
↑CTLs
↓PD-1/PD-L1

Colorectal cancer [184]

Gambogic acid Nanomicelle pH-sensitive
Tumor targeting

↑CTLs
↓Tregs

Melanoma [185]

Gambogic acid Nanoparticle Photothermal ↑DCs
↑CTLs
↓Tregs

Breast cancer [186]

Ganoderma lucidum polysac-
charide

Gold nanoparticle Enhance therapeutic efficacy ↑DCs
↑CTLs

Breast cancer [187]

Ganoderma lucidum polysac-
charide

Nanoparticle Radiosensitization ↑DCs
↑CTLs
↑Th1/Th2 ratio

Breast cancer [188]

Ginsenoside Rg3 Biomimetic nanoparticle Tumor targeting ↑DCs
↑CTLs

Breast cancer [189]

Ginsenoside Rg3 Carbon nanotube Enhance therapeutic efficacy ↑CTLs
↓PD-1/PD-L1

Breast cancer [190]

Ginsenoside Rg3 Liposome Across the BBB
Tumor targeting

↑CTLs
↓M2 macrophages
↓MDSCs
↓Tregs

Glioma [191]

Ginsenoside Rg3 Liposome Inhibit MDR
Tumor targeting

↓M2 macrophages
↓MDSCs
↓PD-L1

Breast cancer [192]

Ginsenoside Rg3 Nanoparticle Mitochondrial targeting
Enhance penetration

↑DCs
↑CTLs
↑Th1/Th2 ratio
↓Tregs
↓PD-L1

Breast cancer [193]

Ginsenoside Rg3 and quercetin Cyclodextrin nanoparticle Tumor targeting ↑DCs
↑CTLs
↓M2 macrophages
↓MDSCs
↓Tregs

Colorectal cancer [194]

Ginsenoside Rh2 Biomimetic nanoparticle pH/redox-sensitive
Tumor targeting
MRI

↑DCs
↑CTLs
↓Tregs

Osteosarcoma [195]
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Table 2 (continued)

Active ingredients Carrier Type Features Effects Cancer/tumor types Refs.

Ginsenoside Rh2 Nanoparticle Photothermal ↑DCs
↑M1 macrophages

Breast cancer [196]

Glycyrrhetinic acid Biomimetic nanoparticle Tumor targeting ↑CTLs Leukemia
Colorectal cancer

[197]

Glycyrrhizic acid Biomimetic nanoparticle Photosensitive
MRI

↑DCs
↑CTLs
↑M1 macrophages
↓Tregs
↓PD-L1

Melanoma [198]

Glycyrrhizic acid and tanshinone 
IIA

Biomimetic nanoparticle Across the BBB
Tumor targeting

↑DCs
↑CTLs
↓M2 macrophages
↓Tregs

Glioblastoma [199]

Glycyrrhizic acid and triptolide Liposome Tumor targeting ↓M2 macrophages Liver cancer [200]

Icaritin Mesoporous silica nanoparticle Tumor targeting
Detect fluorescence

↑CTLs Liver cancer [201]

Icaritin Nanoparticle Enhance therapeutic efficacy ↑CTLs Gastric cancer [202]

Icaritin Nanoparticle Tumor targeting ↑DCs
↑CTLs
↓Tregs
↓MDSCs
↓M2 macrophages
↓TGF-β, IL-10

Liver cancer
Melanoma

[203]

Lentinan and ursolic acid Carrier-free nanodrug Improve solubility
Enhance therapeutic efficacy

↑DCs
↑CTLs
↑M1 macrophages

Colorectal cancer [204]

Lentinan, pachymaran and Tre-
mella polysaccharides

Nanosheet pH-sensitive
Photothermal

↑NKs Breast cancer [205]

Lycium barbarum polysaccharides Nanoparticle Photothermal
Reduce side effects

↑Th1/Th2 ratio Breast cancer [206]

Norcantharidin Nanoparticle pH-sensitive ↑DCs
↑CTLs
↓Tregs
↓PD-L1

Breast cancer [207]

Oridonin Liposome Tumor targeting
Thermosensitive

↑NKs
↑CTLs
↑Th1/Th2 ratio
↑M1 macrophages

Melanoma [208]

Oridonin Nanoparticle Tumor targeting
Reduce side effects

↑Th1/Th2 ratio Esophageal cancer [209]

Oridonin Nanoparticle Tumor targeting
pH/redox-sensitive

↑DCs
↓PD-L1

Breast cancer [210]

Plumbagin and dihydrotanshi-
none I

Biomimetic nanoparticle Tumor targeting
pH-sensitive

↑DCs
↑NKs
↑CTLs
↑M1 macrophages
↓Tregs
↓MDSCs
↓TGF-β, IL-10

Liver cancer [211]

Puerarin Nanoemulsion Tumor targeting ↑CTLs
↑Th1/Th2 ratio
↓Tregs
↓MDSCs
↓M2 macrophages

Breast cancer [212]

Resveratrol Nanoparticle Enhance therapeutic efficacy ↓PD-L1 Oral cancer [213]
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Table 2 (continued)

Active ingredients Carrier Type Features Effects Cancer/tumor types Refs.

Salvianolic acid B Liposome Enhance therapeutic efficacy ↑CTLs
↑Th1/Th2 ratio
↑M1 macrophages
↓Tregs
↓MDSCs
↓TGF-β, IL-10

Breast cancer [214]

Salvianolic acid B Nanoparticle Photothermal
Photoacoustic imaging
Tumor targeting

↑DCs
↑CTLs
↑M1 macrophages
↓Tregs
↓MDSCs
↓TGF-β, IL-10

Breast cancer [215]

Shikonin Biomimetic nanoparticle Tumor targeting
Photothermal

↑DCs
↑CTLs
↑M1 macrophages
↓Tregs
↓MDSCs

Breast cancer
Melanoma

[216]

Shikonin Biomimetic nanoparticle Tumor targeting
TAMs targeting

↑DCs
↑CTLs
↓Tregs
↓PD-L1
↓M2 macrophages

Colorectal cancer [217]

Shikonin Liposome Redox-sensitive ↑CTLs Breast cancer [218]

Shikonin Liposome pH/redox-sensitive
Reduce side effects

↑DCs
↑CTLs
↑Th1/Th2 ratio
↓Tregs
↓TGF-β, IL-10

Melanoma [219]

Shikonin Metal-phenolic network Redox-sensitive ↑DCs
↑NKs
↑CTLs
↑Th1/Th2 ratio
↑M1 macrophages
↓Tregs

Breast cancer [220]

Shikonin Nanoparticle Tumor targeting ↑DCs
↑CTLs
↓Tregs

Breast cancer [221]

Shikonin Nanomicelle Tumor targeting
pH-sensitive

↑DCs
↑CTLs
↓Tregs
↓PD-L1
↓M2 macrophages
↓TGF-β, IL-10

Colorectal cancer [222]

Shikonin Nanoparticle Tumor targeting ↑DCs
↑CTLs
↑NKs
↓MDSCs

Colorectal cancer [223]

Solamargine Biomimetic nanoparticle Tumor targeting
pH-sensitive

↑NKs
↑DCs
↑CTLs
↑M1 macrophages
↓MDSCs
↓TGF-β, IL-10

Prostate cancer [224]

Tetramethylpyrazine Liposome Tumor targeting ↑CTLs Lung cancer [225]

Triptolide Biomimetic nanoparticle Redox-sensitive
Tumor targeting
Reduce side effects

↑DCs
↑CTLs

Melanoma [226]

Triptolide Biomimetic nanoparticle Tumor targeting
Inhibit MDR
Reduce side effects

↑M1 macrophages Ovarian cancer [227]
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Nanoemulsions, microemulsions and self‑microemulsifying 
drug delivery systems
Nanoemulsions and microemulsions overcome 
critical limitations of traditional emulsions in 
TCM delivery through nanoscale droplet sizes, 
enabling enhanced physical–chemical stability and 
bioavailability for poorly soluble active ingredients 
[236]. Their thermodynamic stability eliminates phase 
separation during long-term storage, particularly 
advantageous for TCM formulations containing 
volatile oils [237]. The self-microemulsifying drug 
delivery system comprises surfactants, co-surfactants, 
and oil phases, which can spontaneously disperse 
in water to form microemulsions [238]. Persistent 

challenges include gastrointestinal irritation from 
high surfactant or co-surfactant and limited targeting 
specificity. Emerging strategies employ TCM-derived 
biocompatible surfactants to mitigate toxicity. Qiu et al. 
used an ultrasonic emulsification method to prepare a 
celastrol nanoemulsion (CEL NE), which enhanced the 
immunogenicity in melanoma treatment [165]. CEL 
NE effectively induced tumor immunogenic cell death 
(ICD) and improved both local and distant therapeutic 
effects by reducing PD-L1 expression (Fig.  3B–D). 
Xu et  al. chose soybean lecithin, noted for its good 
biocompatibility, as the primary emulsifier to prepare 
a nanoemulsion carrying puerarin (nanoPue) [212]. 
The surface of nanoPue was modified with a targeting 

Table 2 (continued)

Active ingredients Carrier Type Features Effects Cancer/tumor types Refs.

Triptolide Dendrimer Across the BBB
TAMs targeting
Reduce side effects

↑M1 macrophages Glioblastoma [228]

β-elemene Nanosheet Enhance therapeutic efficacy ↑DCs
↑CTLs
↑M1 macrophages
↓TGF-β, IL-10

Melanoma [229]

Fig. 3 Lipid-based nano-delivery systems with TCM active ingredients. A Schematic diagram of thermosensitive liposomes for melanoma 
chemoimmunotherapy. Reproduced with permission of Ref. [208]. Copyright © 2022 Elsevier. B Tumor images, C flow cytometry analysis 
and quantitation, and D western blot analysis of CEL NE treatment on B16F10 bilateral tumor model. Reproduced with permission of ref. [165]. 
Copyright © 2020 Elsevier
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ligand aminoethyl anisamide (AEAA), which targets 
the sigma-1 receptor, facilitating efficient uptake of 
the nanoparticles by tumor cells. NanoPue improves 
the solubility and bioavailability of puerarin, effectively 
reshapes the immune microenvironment, and serves as 
a promising adjuvant for chemotherapy and checkpoint 
blockade immunotherapy.

Polymer‑based nano‑delivery systems with TCM active 
ingredients
The polymer-based nano-delivery systems represent cut-
ting-edge delivery methods that enhance drug stability 
and solubility while also featuring easy modification and 
biodegradability.

Polymer micelles
Polymer micelles are generated by the self-assembly 
of amphiphilic block copolymers in water. The 
hydrophobic core shields lipophilic TCM compounds 
from degradation and improves solubility, while 
the hydrophilic shell helps avoid clearance by the 
reticuloendothelial system (RES) and extends blood 
circulation time. Through the enhanced permeability 
and retention (EPR) effect, polymer micelles can 
accumulate in tumor tissues, thereby boosting drug 
efficacy. Additionally, the hydrophilic segments can be 
functionalized with specific antibodies, ligands, peptides, 
or other stimulus-responsive elements to enable targeted 
delivery and controlled release [239, 240]. Key limitations 
in polymer micelles include poor biodegradability and 
limited drug loading of polar components. Guo et  al. 
developed a functionalized doxorubicin-loaded micelle 
using fucoidan (FD/DOX), which can effectively bind to 
activated platelets via P-selectin, enabling the tracking 
of tumor tissues and circulating tumor cells [182]. 
FD/DOX is capable of inhibiting TGF-β expression, 
reversing immunosuppressive microenvironment, 
and demonstrating excellent anti-tumor and anti-
metastatic efficacy. Deng et al. designed a self-assembling 
nanomedicine constructed from an amphiphilic 
conjugate F3 peptide-low molecular weight heparin 
(LMWH)-hydrazone-GA (FLG) [185]. The F3 peptide 
targets tumor vascular endothelial cells and acts as a 
ligand for FLG. The hydrophilic LMWH and hydrophobic 
drugs, acting as VEGF/VEGF receptor 2 inhibitors, 
can be released under acidic conditions to induce 
vascular normalization. Additionally, when combined 
with CCL5/C-C motif chemokine receptor (CCR)5 
pathway blockers, FLG further promotes vascular repair 
and TME remodeling. Li et  al. utilized two materials, 
folic acid-conjugated 1,2-distearoyl-sn-glycero-3-
phosphoethanolamine-poly(ethylene glycol) (DSPE-PEG) 
and polyethyleneimine (PEI)-polycaprolactone (PCL), 

to co-deliver shikonin and PD-L1 small interfering RNA 
(siRNA) (Fig.  4A) [222]. The PCL component forms a 
hydrophobic core that encapsulates shikonin, while the 
PEI segment is employed for loading PD-L1 siRNA. This 
co-delivery system enhances tumor immunotherapy 
by simultaneously inducing ICD, repolarizing M2-like 
TAMs, and suppressing PD-L1 expression (Fig.  4B and 
C).

Polymer nanoparticles
Polymer nanoparticles are solid spherical particles 
composed of polymer materials obtained through 
monomer polymerization, polymer dispersion, or self-
assembly of amphiphilic polymers [241, 242]. Polymer 
nanoparticles possess the advantage of biodegradability, 
which is essential for the sustained release of TCM active 
ingredients. Their surface engineering versatility enables 
controlled drug release and active tumor targeting, 
particularly in cancer treatment, where they hold 
significant application value [243]. Xu et  al. explored a 
HA-modified polydopamine (PDA) nanocarrier loaded 
with ursolic acid and ASIV for combined chemotherapy, 
immunotherapy, and photothermal therapy of lung 
cancer (Fig. 4D–F) [160]. HA targets the CD44 receptor 
on tumor cell surfaces, enhancing drug accumulation 
within the tumor. This nanoparticle not only releases 
drugs to inhibit tumor growth and improve antitumor 
immunity but also enhances treatment efficacy 
through photothermal effects. Xiong et  al. constructed 
PEGylated poly(lactic-co-glycolic acid) (PLGA) 
nanoparticles encapsulating Astragalus polysaccharide 
and gold nanorods, combined with focused ultrasound 
technology for breast cancer treatment [163]. The 
study demonstrated that these nanoparticles not only 
effectively delivered drugs to tumor sites but also 
served as contrast agents for tumor detection. Zhu et al. 
developed a T7 peptide-modified nanoparticle based 
on carboxymethyl chitosan (CMCS) for co-delivery 
of docetaxel and curcumin, aiming to enhance the 
chemoimmunotherapy against lung cancer [169]. This 
nanoparticle specifically targets the transferrin receptor 
(TfR) overexpressed on lung cancer cells and precisely 
releases drugs in response to pH and ROS levels.

Dendrimers
Dendrimers are synthetic polymers with a tree-like three-
dimensional structure characterized by a central small 
molecule core, multiple branching units, and numerous 
functional groups on the periphery. The cavities of 
dendrimers can be utilized for drug encapsulation, 
effectively overcoming challenges related to drug 
solubility, permeability, and biocompatibility [244, 245]. 
Liaw et al. designed a generation-4 hydroxyl-terminated 
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polyamidoamine dendrimer-triptolide conjugate that can 
penetrate the damaged BBB and selectively target brain 
tumors and TAMs [228]. The dendrimers significantly 
reduce the systemic toxicity of triptolide, promoting its 
induction of anti-tumor immunity.

Inorganic material‑based nano‑delivery systems with TCM 
active ingredients
Inorganic nanomaterials have emerged as promising 
candidates in biomedicine compared to organic nano-
materials. They have the advantages of simple prepara-
tion process, high controllability of shape and size, and 
easy surface modification. Additionally, these materials 
exhibit unique optical, electrical, and magnetic proper-
ties, which enable potential functions such as imaging 
enhancement, targeted delivery, and synergistic drug 
therapy [246]. However, inorganic materials may not 
be biodegradable in some cases and may cause toxicity 
problems with long-term use.

Metal and metal compound nanoparticles
Gold nanoparticles are the most widely used type of 
metal nanomaterial, with applications in hyperthermia 
and photothermal therapy, drug delivery systems for 
cancer treatment, and the development of biosensors 
and diagnostic tools. A key characteristic of gold 
nanoparticles is their ease of surface modification and 
binding, which facilitates non-covalent TCM loading 
while maintaining good stability and biocompatibility 
[247]. The use of EGCG attached to gold nanoparticles 
(EGCG-pNG) is more effective in treating bladder cancer 
compared to free EGCG [179]. EGCG-pNG inhibits 
tumor cell growth by inducing apoptosis and enhances 
anti-tumor immunity (Fig. 5A–C). Furthermore, EGCG-
pNG can prevent liver damage caused by high doses of 
EGCG.

Silver nanoparticles possess excellent antibacterial 
properties and optical characteristics, which make them 
widely used in fields such as antimicrobial coatings for 
medical supplies and the treatment of infectious diseases. 

Fig. 4 Polymer-based nano-delivery systems with TCM active ingredients. A Schematic diagram of co-delivery polymer micelles to improve 
immunosuppressive TME. B mRNA levels of M1-TAM and M2-TAM markers and C PD-L1 and PKM2 expression after treatment in vitro. Reproduced 
with permission of Ref. [222].  Copyright © 2020 American Chemical Society. D Schematic illustration of drug-loaded PDA-HA nanoparticle 
in combination with chemo-immuno-photothermal therapy. E The corresponding quantification of the number of  CD8+ T cells and F NK cells. 
Reproduced with permission of Ref. [160]. The copyright is owned by the author under the Creative Commons Attribution-NonCommercial 3.0 
Unported Licence
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Their surface properties and chemical modifications ena-
ble additional drug delivery functions, allowing them to 
act as carriers or stabilizers in nano-delivery systems to 
improve drug solubility and stability [248].

Iron oxide exists in two primary forms:  Fe2O3 and 
 Fe3O4. The magnetic properties of  Fe3O4, particularly 
as magnetic nanoparticles, allow for targeted treatment 
of tumors via external magnetic fields. Iron oxide 
nanoparticles have been extensively utilized in magnetic 
resonance imaging (MRI), targeted drug delivery, 
and thermal therapy [249]. Chiang et  al. developed a 
magnetic nanomedicine composed of superparamagnetic 
iron oxide nanoparticles, fucoidan, and aldehyde-
functionalized dextran (IO@FuDex) [181]. Magnetic 
navigation effectively directs IO@FuDex to tumor sites, 

reducing off-target effects. Dextran can be conjugated 
with various antibodies to maximize the restoration of 
tumor-infiltrating lymphocyte vitality, particularly when 
coupled with immune checkpoint inhibitors and T-cell 
activators.

Zinc oxide and titanium dioxide nanoparticles exhibit 
excellent photothermal and photodynamic properties, 
which can significantly enhance the drug-controlled 
release and therapeutic effects [250, 251].

Carbon‑based nanomaterials
Carbon dots, which are zero-dimensional nanoma-
terials with particle sizes smaller than 10  nm, exhibit 
notable photoluminescent properties. They are easy to 
synthesize, highly stable, biocompatible, and low-toxicity, 

Fig. 5 Inorganic material-based nano-delivery systems with TCM active ingredients. A Prediction of EGCG-pNG complex assembly. B Serum 
cytokine levels and C NK cytotoxicity in tumor-bearing mice after treatment. Reproduced with permission of Ref. [179].  Copyright © 2011 Elsevier. 
D Ginsenoside Rg3-loaded carbon nanotubes suppress the PD-1/PD-L1 pathway in TNBC. Reproduced with permission of ref. [190]. The copyright 
is owned by the author under the Creative Commons Attribution License. E Schematic representation of synergistic antitumor immunotherapy 
mechanism of MSN nanoparticles. Reproduced with permission of Ref. [158]. Copyright © 2021 Elsevier
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making them suitable for applications in anti-tumor, anti-
bacterial, and central nervous system diseases [252].

Carbon nanotubes are hollow cylindrical structures 
composed of carbon atoms arranged in a hexagonal pat-
tern and curled into tube-like shapes. Due to their high 
specific surface areas and drug-loading capacity, carbon 
nanotubes have been used as TCM delivery carriers, 
allowing for controlled release and improving therapeu-
tic effects [253]. Luo’s research shows that loading ginse-
noside Rg3 onto carbon nanotubes further enhances its 
inhibitory effect on TNBC cell growth through suppres-
sion of the PD-1/PD-L1 axis (Fig. 5D) [190].

Graphene oxide is a two-dimensional carbon material 
derived from the oxidation of graphene. It retains a hex-
agonal arrangement of carbon atoms similar to graphene 
but contains oxygen-containing functional groups. These 
groups impart good water solubility and chemical reac-
tivity to graphene oxide [254].

Silicon‑based nanomaterials
Mesoporous silica nanoparticles (MSNs) feature control-
lable pore sizes and distributions, allowing TCM active 
ingredients to be loaded inside the pores via physical 
adsorption or chemical modification. In addition, MSNs 
possess good biocompatibility, stability, and ease of mod-
ification, enabling controlled release and targeted deliv-
ery of drugs [255]. Wu et al. prepared PEGylated MSNs 
loaded with astragaloside III and chlorin e6 (Ce6) to serve 
as anti-tumor immune activators and photosensitizers 
(Fig.  5E) [158]. Ce6 is known for its anti-tumor activi-
ties, effectively inducing tumor apoptosis and promoting 
immune cell infiltration into tumors, thereby enhanc-
ing the anti-tumor function of  CD8+ T cells. Xiang et al. 
constructed a multifunctional nanocarrier consisting of 
MSNs loaded with AS1411 aptamer, icaritin, and fluores-
cein isothiocyanate (FITC) [201]. Given that nucleolin is 
overexpressed in various malignant tumors, the AS1411 
aptamer can specifically bind to nucleolin on the cell 
membrane surface, leading to the release of FITC and 
icaritin from the MSNs for combined detection and ther-
apy purposes.

Biomimetic material‑based nano‑delivery systems 
with TCM active ingredients
Biomimetic nanomaterials represent a novel class 
of carriers derived from living organisms. They are 
designed to mimic the natural biological characteristics 
and functions of cells and are known for their high 
biocompatibility. These materials offer substantial 
advantages in targeted drug delivery, including enhanced 
therapeutic efficacy and reduced adverse effects [256]. 
The limitations are the difficulty of standardized 

extraction and preparation of bionic materials and the 
possible problem of insufficient encapsulation for TCM 
active ingredients.

Albumin
Albumin, the most abundant protein in plasma, is 
distinguished by its excellent biocompatibility and 
biodegradability and has shown safety and reliability 
in clinical applications. Its structural properties 
enable it to bind effectively with a wide range of 
TCM active ingredients, potentially protecting these 
drugs from degradation and metabolism in the body, 
thereby optimizing their pharmacokinetic properties. 
Additionally, albumin’s ability to bind to receptors 
overexpressed in tumor tissues and cells provides a 
unique advantage for active targeted cancer therapy 
[257]. Xiong et al. synthesized a platinum-based prodrug 
containing two artesunate molecules (A-Pt), which can 
be reduced to cisplatin and artesunate under high levels 
of glutathione (GSH) [154]. They further encapsulated 
A-Pt and near-infrared-II photothermal agent IR1048 
with human serum albumin (HSA) to form nanoparticles 
(Fig.  6A). IR1048 enables mild hyperthermia therapy 
and enhances the therapeutic efficacy of A-Pt. Du 
et  al. developed a nanocomplex with multiple immune 
activation functions consisting of hollow  MnO2 
nanoparticles loaded with GL and Ce6-modified 
DNAzyme, encapsulated within bovine serum albumin 
(BSA) [198]. Upon entering the TME, the released 
 Mn2+ ions catalyze the cleavage of PD-L1 mRNA by 
DNAzyme, activating the cyclic GMP-AMP synthase 
(cGAS)-stimulator of interferon genes (STING) signaling 
pathway and improving MRI quality in the tumor region. 
Additionally, the ICD induced by GL and photodynamic 
therapy further enhances the efficacy of immunotherapy.

Cell membrane vesicles
Cell membrane vesicles derived from cells inherit the 
surface characteristics and functional properties of their 
parental cells, resulting in excellent biocompatibility, 
low immunogenicity, and prolonged circulation times. 
Utilizing various cell membrane vesicles as coating 
materials for nanocarriers not only enables evasion 
of immune surveillance but also effectively enhances 
targeted precision therapy [258]. Guo et  al. designed a 
curcumin-loaded nanomicelle incorporating glycyrrhetic 
acid-Angelica sinensis polysaccharide-disulfide bond-
curcumin (GACS-Cur) to demonstrate superior targeting 
ability and anti-tumor effects in liver cancer treatment 
[173]. To further enhance long-term circulation, GACS-
Cur was shielded with red blood cell membranes to 
evade immune system clearance. In the presence of 
high levels of GSH in the TME, GACS-Cur dissociates, 



Page 21 of 30Zheng et al. Journal of Nanobiotechnology          (2025) 23:357  

releasing the drug to directly kill liver cancer cells, as 
well as increase the infiltration of  CD8+ T cells and 
the expression of IL-2, IFN-γ, and TNF-α. Zhang et  al. 
encapsulated ginsenoside Rg3 in PLGA nanoparticles 
and coated them with tumor cell-derived microvesicles, 

resulting in Rg3-PLGA@TMVs [189]. Due to their 
homologous targeting properties, Rg3-PLGA@TMVs 
are precisely delivered to specific tumors, significantly 
enhancing anti-tumor immunity. Moreover, Rg3-PLGA@
TMVs can improve the efficacy of chemotherapy while 

Fig. 6 Biomimetic material-based nano-delivery systems with TCM active ingredients. A Schematic diagram of hyperthermia enhanced 
chemotherapy and immunotherapy with HSA nanoparticles. Reproduced with permission of Ref. [154].  Copyright © 2022 Wiley–VCH GmbH. B 
Preparation of hEL-RS17. Reproduced with permission of Ref. [216]. Copyright © 2023 Wiley–VCH GmbH. C Flow cytometry analysis of mature DCs, 
M2-TAMs, M1-TAMs, CTLs, and Tregs in glioblastoma tissues. Reproduced with permission of Ref. [199]. Copyright © 2023 American Chemical Society
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reducing toxic side effects. Tang et  al. developed a 
hybrid nanoplatform called hEL-RS17 (Fig.  6B) [216]. 
Derived from M1 macrophage extracellular vesicles and 
decorated with RS17 peptide, hEL-RS17 specifically 
binds to CD47 on tumor cells. It blocks the CD47-SIRPα 
signaling pathway, facilitating active targeting of tumor 
cells and reshaping the TAM phenotype. Additionally, 
hEL-RS17 co-encapsulates shikonin, photosensitizer 
IR820, and polymetformin, synergistically exerting 
potent anti-tumor effects.

Exosomes
Exosomes, a type of extracellular vesicles, are formed in 
endosomes and possess a smaller size with a relatively 
complex composition and structure [259]. Cui et al. con-
structed self-assembled tanshinone IIA-GL nanomicelles, 
which were subsequently encapsulated with endogenous 
serum exosomes [199]. CpG oligonucleotide (CpG-
ODN), an immune adjuvant, was then inserted into the 
exosome membrane to obtain CpG-EXO/TGM. CpG-
EXO/TGM can evade phagocytosis by the mononuclear 
phagocyte system (MPS) and cross the BBB through TfR-
mediated transcytosis, ultimately achieving efficient drug 
release within tumor cells (Fig. 6C). Li et al. prepared bio-
mimetic hybrid nanoparticles (miR497/TP-HENPs) con-
sisting of tumor-derived exosomes expressing CD47 and 
liposomes modified with the tumor-targeting peptide 
cRGD for the co-delivery of miR497 and triptolide [227]. 
The results demonstrated that miR497/TP-HENPs syner-
gistically induced cell apoptosis by inhibiting the PI3K/
AKT/mammalian target of rapamycin (mTOR) signaling 
pathway and overcame drug resistance in ovarian cancer 
by modulating macrophage polarization.

Other nano‑delivery systems with TCM active ingredients
Carrier-free nanodrugs refer to drugs that possess suf-
ficient biological activity and cell permeability, allow-
ing them to enter cells directly without the assistance of 
nanocarriers. Wang et al. have developed an enzyme-sen-
sitive tumor-targeting nanodrug delivery system called 
Angelica sinensis polysaccharide-peptide-doxorubicin 
(AP-PP-DOX) [153]. In this system, doxorubicin and 
polysaccharide can be rapidly released from AP-PP-DOX 
in the presence of MMP2. The polysaccharides not only 
serve as carriers but also act as effectors to improve the 
TME, enhance immune functions, and produce synergis-
tic effects with chemotherapy drugs. Yan et al. designed 
self-delivering nanoparticles with a potent inducible ICD 
effect [172]. Curcumin and shikonin can self-assemble 
into nanoparticles through π–π stacking and hydropho-
bic interactions, exhibiting excellent stability, cellular 
uptake, and tumor accumulation.

Organic–inorganic hybrid materials combine the char-
acteristics of both organic and inorganic materials. Guo 
et  al. developed a nanoplatform based on a magnetic 
metal–organic framework (MOF) and platelet mem-
brane coating (PmMN@Om&As) [159]. This platform 
facilitates the simultaneous delivery of oxymatrine and 
ASIV to the microenvironment of liver cancer. PmMN@
Om&As features a large drug-carrying capacity and can 
evade clearance by the MPS, as well as target liver can-
cer tissues under a magnetic field. Duan et al. developed 
self-assembling nanoscale coordination polymer (NCP) 
core–shell nanoparticles (OxPt/DHA), with oxaliplatin 
prodrug in the core and dihydroartemisinin prodrug in 
the shell [174]. These nanoparticles could reduce uptake 
by the MPS and selectively release drugs within the TME, 
thereby activating immune responses and exerting anti-
tumor effects. In mouse models, OxPt/DHA combined 
with anti-PD-L1 antibody was able to eradicate colorec-
tal tumors, providing new strategies and experimental 
foundations for combination immunotherapy. Shi et  al. 
constructed aluminum hydroxyphosphate nanoparticles 
loaded with CpG-ODN, covered by Fe-shikonin metal-
phenolic networks (MPNs), for tumor vaccines [220]. 
After entering tumor cells, the MPN shell decomposes 
and effectively induces ICD. Subsequently, the aluminum 
nanoparticles absorb tumor cell lysates and activate anti-
tumor immunity in conjunction with CpG-ODN.

Conclusions
The active ingredients of TCM can enhance anti-tumor 
immune responses by activating immune cells, regulating 
cytokine levels, and inhibiting immunosuppressive cells. 
They foster an immune microenvironment conductive to 
tumor elimination. Crucially, nanotechnology augments 
TCM’s therapeutic potential through two distinct 
paradigms: TCM delivered by nano-system and TCM as 
part of the nano-system. In the former strategy, nano-
delivery systems overcome inherent pharmaceutical 
limitations of TCM active ingredients by enhancing 
solubility, prolonging systemic circulation, and enabling 
tumor-targeted accumulation through both passive and 
active targeting mechanisms. In the latter approach, 
TCM-derived bioactive molecules serve as functional 
building blocks for nano-constructs, imparting intrinsic 
biocompatibility and synergistic therapeutic effects. 
Importantly, nano-formulated TCM demonstrates 
superior pharmacokinetic profiles compared to 
free counterparts, with marked improvements 
in bioavailability, tumor penetration depth, and 
immunomodulatory activity [214, 219, 226, 229]. The 
synergistic combination of TCM active ingredients with 
nano-delivery systems provides a viable guide for the 
development of next-generation immunotherapies with 
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higher efficacy and lower toxicity. It is a transformative 
strategy for overcoming the limitations of current cancer 
immunotherapies.

Despite the identification of tens of thousands of 
active ingredients in TCM, there is a limited number of 
reported ingredients with documented antitumor immu-
nomodulatory effects. Several factors contribute to this. 
Firstly, current research predominantly emphasizes on 
the traditional uses and well-established components 
of TCM. Concurrently, the antitumor immunomodula-
tory effects of many ingredients remain underexplored 
or undiscovered, and systematic studies in this area are 
still needed. Additionally, the complex chemical compo-
sitions and multifaceted mechanisms of action of TCM 
make it challenging to elucidate their specific antitumor 
immunomodulatory effects [260–262]. For instance, the 
effects of active ingredients in TCM may vary accord-
ing to doses, drug interactions, and tumor heterogene-
ity, thus affecting their immunomodulatory efficacy. Last 
but not least, challenges related to standardization, vali-
dation, clinical trials, and resources further hinder the 
research in this field. However, with ongoing advance-
ments in scientific research technologies and more com-
prehensive studies (such as high-throughput screening 
and precision medicine), it is anticipated that future 
research will reveal additional TCM active ingredients 
for tumor immunotherapy.

Nanomedicine is a promising frontier in medical 
research. The integration of nano-delivery systems 
with TCM active ingredients has demonstrated 
enhanced and reliable therapeutic effects, encompassing 
nanosized TCM active ingredients and TCM active 
ingredients combined with other nanomedicines. 
Certain nanoparticles with unique physicochemical 
properties can not only respond to multiple stimuli for 
precise drug delivery but also integrate phototherapy, 
thermotherapy, and ultrasound therapy for improved 
immune-modulating and anti-tumor effects [263, 
264]. Additionally, combinations of TCM active 
ingredients with chemotherapy, targeted therapy, 
and immunotherapy drugs often exhibit superior 
efficacy compared to monotherapy approaches [265]. 
Recent research has explored combining TCM active 
ingredients with gene therapies (such as siRNA, mRNA, 
and CRISPR-Cas9), offering promising, precise cancer 
treatments [266]. While nano-delivery systems offer 
numerous advantages, it is imperative to consider their 
stability, biocompatibility, toxicity, immunogenicity, drug 
release and targeting capabilities, as well as production 
costs and clinical translatability to ensure their safety and 
effectiveness. Future research should focus on optimizing 
nanocarrier design, discovering potential combination 

therapies, and validating clinical feasibility to pave the 
way for novel tumor immunotherapy.
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